跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/24 13:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張寰生
論文名稱:利用振動吸震器理論做動態揚聲器之低頻延伸設計
論文名稱(外文):Low-frequency Extension of Dynamic Loudspeakers Based on The Theory of Vibration Absorber
指導教授:白明憲白明憲引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:67
中文關鍵詞:喇叭設計低頻延伸微型揚聲器低音喇叭共振式喇叭振動吸震器理論喇叭最佳化
外文關鍵詞:vibration absorber theorymicrospeakersubwoofersresonant loudspeakervented-boxloudspeaker optimization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本論文著重在揚聲器的低頻延伸設計,從微型揚聲器到中大型的揚聲器都在本文探討的範圍裡。設計方法為利用傳統的vented-box結構,並找出最佳的音箱幾何尺寸,此時相當於機與聲兩個系統間有偶合效應的2自由度振動系統,這個系統和振動學中的振動吸震器理論非常相似,所以可以把振動吸震器理論應用在這裡。分析的平臺是利用機電聲類比電路,並使用電路學中方法,來求得揚聲器的電阻抗和軸向聲壓。為了建立一套針對vented-box的設計流程,所以先跟據振動吸震器理論來求出特徵方程式,利用此式來畫一設計圖表,這樣一來即可利用此圖表來做設計。除此之外,還可以進一步的使用這個圖表來做限制條件下的最佳化設計。本論文主旨即在列出上述的設計準則和方法。
A universal design procedure is presented for enhancing the low-frequency responses of loudspeakers ranging from handset microspeakers to subwoofers. This procedure aims at finding the optimal parameters of vented-box configuration using a systematic procedure based on vibration absorber theory. By viewing the system as two coupled serial and parallel oscillators, a characteristic equation is derived for the vented box system. A simulation platform is then established using electro-mechano-acoustical (EMA) analogous circuits. Electrical impedance and on-axis sound pressure level (SPL) of the loudspeaker can be simulated by solving the loop equations of the analogous circuit. In order to facilitate the design process of such loudspeaker systems, a design chart is devised using the characteristic equation for deciding the parameters to deliver maximal output at the low-frequency end. In addition, a constrained optimization procedure is applied to maximize the acoustic output under the enclosure constraints. Simulations and experiments were undertaken for validating the resulting optimal design. Design guidelines are summarized.
1 Introduction………………………………………………………….. 1.
2 Theory and Method………………………………………………….. 3.
2.1 Electrical-mechanical-acoustical analogous circuit………….. 3.
2.2 The method of parameter identification……………………… 6.
2.3 Modeling Acoustical Systems………………………………….. 9.
3 Bass enhancement and optimization method……………………... 17.
3.1 Modeling the Vented-Box System……………………………. 17.
3.2 Theory of Dynamic Vibration Absorber…………………….. 18.
3.2.1 Dynamic Vibration Absorber…………………………. 18.
3.2.2 Analysis of the Coupled Speaker-Enclosure System… 19.
3.2.3 Acoustical Design by the Design Chart………………. 21.
3.3 Optimal Design of The Vented-box…………………………... 22.
4 Design Application Examples……………………………………… 24.
4.1 Microspeaker……………………………………………….…. 24.
4.1.1 Design optimization……………………………………. 24.
4.1.2 Experimental Verification……………………………... 25.
4.2 Conventional Subwoofer…………………………………..…. 26.
4.2.1 Design optimization……………………………………. 26.
4.2.2 Experimental Verification……………………………... 27.
4.3 Resonant Loudspeaker……………….………………………. 28.
4.3.1 Design optimization……………………………………. 28.
4.3.2 Experimental Verification……………………………... 29.
5 Conclusions…………………………………………………………. 31.
References…………………………………………………………….. 32.
[1] H. Olson, Acoustical Engineering (Van Nostrand, New York, 1957. Reprinted by Professional Audio Journals, Philadelphia, PA, 1991).
[2] L. L. Beranek, Acoustics (Acoustical Society of America, Woodbury, NY. 1996).
[3] W. M. Leach, Jr., Introduction to Electroacoustics and Audio Amplifier Design (Kendall-Hunt, Dubuque, IA, 2003).
[4] N. Thiele and R. Small, in AES Loudspeaker Anthologies, Vols. 1–3 (Audio Engineering Society, New York, 1978, 1984, 1996).
[5] A. N. Thiele, “Loudspeakers in Vented-boxes: Part I,” Audio Engineering Society, Vol. 19, No. 5, pp. 382-392 (1971).
[6] A. N. Thiele, “Loudspeakers in Vented-boxes: Part II,” Audio Engineering Society, Vol. 19, No. 6, pp. 471-483 (1971).
[7] R. Small, “Vented-Box Loudspeaker Systems, Part I: Small-Signal Analysis,” Audio Engineering Society, Vol. 21, No. 5, pp. 363-372 (1973).
[8] R. Small, “Vented-Box Loudspeaker Systems, Part II: Large-Signal Analysis,” Audio Engineering Society, Vol. 21, No. 6, pp. 438-444 (1973).
[9] R. Small, “Vented-Box Loudspeaker Systems, Part III: Synthesis,” Audio Engineering Society, Vol. 21, No. 7, pp. 549-554 (1973).
[10] R. Small, “Vented-Box Loudspeaker Systems, Part IV: Appendices,” Audio Engineering Society, Vol. 21, No. 8, pp. 635-639 (1973).
[11] M. R. Bai and J., Liao, “Acoustic Analysis and Design of Miniature Loudspeakers for Mobile Phones,” Audio Engineering Society, Vol. 53, No. 11, pp. 1061-1076 (2005).
[12] F. S. Tse, I. E. Morse, and R. T. Hinke, Mechanical Vibrations: Theory and Applications (Allyn & Bacon, Boston, MA, 1978)
[13] L. Meirovitch, Element of Vibration Analysis (McGraw-Hill, New York, 1986)
[14] P. E. Gill, W. Murry and M. H. Wright, Practical Optimization (Academic Press, 1981)
[15] J. S. Arora, Introduction to Optimum Design (McGraw-Hill, 1989)
[16] M. A. Bhatti, Practical Optimization Methods with Mathematica Applications (Springer-Verlag, 2000)
[17] R. M. Aarts, “High-Efficiency Low-Bl Loudspeakers,” Audio Engineering Society, Vol. 53, No. 7/8, pp. 8-11 (2006)
[18] R. M. Aarts, “Efficient Resonant Loudspeakers with Large Form-Factor Design Freedom,” Audio Engineering Society, convention paper 6780, the 120th Convention 2006 May 20-23 Paris, France.
[19] R. M. Aarts, “Optimally Sensitive and efficient Compact Loudspeaker,” J. Acoust. Soc. Am. Vol. 119, No. 2, pp. 4-6 (2006)
[20] The MathWorks, Matlab optimization toolbox Natick, Mass., (http://www.mathworks.com/products/ optimization/)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top