跳到主要內容

臺灣博碩士論文加值系統

(100.28.231.85) 您好!臺灣時間:2024/11/09 02:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐士峰
研究生(外文):ShihFeng Hsu
論文名稱:高效率上發光有機發光元件的開發
論文名稱(外文):Development of Highly Efficient Top-Emitting Light-Emitting Devices
指導教授:陳金鑫陳金鑫引用關係
指導教授(外文):Chin. H. Chen
學位類別:博士
校院名稱:國立交通大學
系所名稱:應用化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
畢業學年度:95
語文別:英文
論文頁數:93
中文關鍵詞:有機發光二極體上發光元件
外文關鍵詞:OLEDtop-emission
相關次數:
  • 被引用被引用:0
  • 點閱點閱:361
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
We have developed highly efficient red, green and blue top-emitting organic light-emitting devices by using Ag as the anode and cathode. We optimized microcavity effect in the devices by tuning suitable optical length for RGB emissions. A very saturated RGB color with Commission Internationale d’Eclairage (CIE) coordinates of (0.646, 0.353), (0.227, 0.721) and (0.135, 0.056) for RGB respectively were demonstrated and shown to display a color gamut of NTSC 102%. We also introduced a new hole-injection layer to get better carrier balance in the TOLEDs with which one of the best electroluminescence (EL) efficiencies for red was achieved at 37.5 cd/A .

We have also developed highly efficient white top-emitting organic light-emitting devices with broad emission by modifying both the anode and cathode. To alleviate the undesirable microcavity effect and obtain “broad” white emission, a CFx-coated Ag anode and an index-matching layer (SnO2) capped on a thin Ca/Ag cathode with a maximum transparency of 80% were employed. A top-emitting broad white-light device, based on the dual-layer architecture of light blue and yellow emitters with one of the highest EL efficiencies of 22.2 cd/A (9.6 lm/W) at 20 mA/cm2 and 7.3 V with CIE coordinates of (x=0.31, y=0.47), has been demonstrated.
Chapter 1 Introduction …1
1.1Overview of OLED devices and displays…………1
1.2Motivation………………………………..….………3
1.3Thesis outlines………………………………………5

Chapter 2 Color-saturated top-emitting organic light-emitting devices …7
2.1Introduction…………………………………………7
2.2Experimental …….………………………….……9
2.3Results and discussions..………………………11
2.3.1Alq-based devices with various thickness of ITO…11
2.3.2Optimized TOLEDs with RGB emissive colors…13
2.3.3Viewing angle of Alq-based and RGB TOLEDs…17

Chapter 3 Highly efficient top-emitting organic light-emitting devices …21
3.1Optical simulation…………………………………21
3.2High efficiency TOLED devices……………….…23
3.2.1Ca/Ag system………………………………………24
3.2.2N-doping ETL/Ag system…………………………25
3.2.3New HIMs system…………………………………28
3.3Power consumption simulation of TOLEDs……....32
3.4WTOLEDs on TFT array………………………………37

Chapter 4 White light top-emitting organic light-emitting devices …38
4.1Introduction………………………………………………38
4.2White light top-emitting organic light-emitting devices with a dual-cavity structure………………………………41
4.2.1Single-cavity WTOLEDs…………………………………42
4.2.2Simulation and experimental comparisons of single-cavity WTOLEDs…46
4.2.3Using Al/ITO as the separating layer in a dual-cavity structure……48
4.2.4Using Ni as the separating layer in a dual-cavity structure……………51
4.3White light top-emitting organic light-emitting devices with a highly transparent cathode……………….56
4.4Highly efficient top-emitting white organic electroluminescent devices…63
4.4.1Device characteristics of WTOLEDs……………64
4.4.2WTOLEDs on TFT array…………………………69
Chapter 5 High-efficiency and easily manufactured top-emitting white organic electroluminescent devices …73
5.1WTOLEDs with a single blue dopant………………………73
5.2WTOLEDs with a stacked structure………………………81

Chapter 6 Summary and future prospects …85
6.1Summary…………………………………..…………85
6.2Future prospects…………………………………86

Materials …87
Publication list …90
Author’s autobiography …93
[1] J. H. Lee, W. J. Nam, S. M. Han, M. K. Han, SID Digest, 34 (2003) 490.
[2] J. C. Goh, C. K. Kim, J. Jang, SID Digest, 34 (2003) 494.
[3] J. N. Bardsley, United States Display Consortium, San Jose, CA 95113, 2002. [http://www.usdc.org/technical/downloads/OLED_Techroadmap_nbtext.pdf]
[4] H. K. Chung, IDW Digest, 9 (2002) 12.
[5] A. Dodabalapur, L. J. Rothberg, T. M. Miller, E. W. Kwock, Appl. Phys. Lett. 64 (1994) 2486.
[6] A. Dodabalapur, L. J. Rothberg, T. M. Miller, Electron. Lett. 30 (1994) 1000.
[7] A. Dodabalapur, L. J. Rothberg, T. M. Miller, Appl. Phys. Lett. 65 (1994) 2308.
[8] N. Takada, T. Tsutsui, S. Saito, Appl. Phys. Lett. 63 (1993) 2032.
[9] S. Tokito, K. Noda, Y. Taga, Appl. Phys. Lett. 68 (1996) 2633.
[10] P. E. Burrows, V. Khalfin, G. Gu, S. R. Forrest, Appl. Phys. Lett. 73 (1998) 435.
[11] R. B. Fletcher, D. G. Lidzey, D. D. C. Bradley, M. Bernius, S. Walker, Appl. Phys. Lett. 77 (2000) 1262.
[12] F. Jean, J. Y. Mulot, B. Geffroy, C. Denis, P. Cambon, Appl. Phys. Lett. 81 (2002) 1717.
[13] A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, J. M. Phillips, J. Appl. Phys. 80 (1996) 6954.
[14] T. Sasaoka, M. Sekiya, A. Yamoto, J. Yamada, T. Hirona, Y. Iwase, T. Yamada, T. Ishibashi, T. Mori, M. Asano, S. Tamura, T. Urabe, SID Digest, 32 (2001) 384.
[15] S. Terada, G. Izumi, Y. Sato, M. Takahashi, M. Teda, K. Kawase, K. Shimotoku, H. Tamashiro, N. Ozawa, T. Shibasaki, C. Sato, T. Nakadaira, Y. Iwase, T. Sasaoka, T. Urabe, SID Digest, 34 (2003) 1463.
[16] B. Balaganesan, W. J. Shen, C. H. Chen, Tetrahedron Lett. 44 (2003) 5747.
[17] C. Y. Iou, T. H. Liu, H. H. Chen, W. J. Shen, C. H. Chen, SID Digest, 34 (2003) 971.
[18] C. H. Chen, C. W. Tang, Appl. Phys. Lett. 79 (2001) 3711.
[19] T. H. Liu, C. Y. Iou, C. H. Chen, Appl. Phys. Lett. 83 (2003) 5241.
[20] C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51 (1987) 913.
[21] K. Mameno, S. Matsumoto, R. Nishikawa, T. Sasatani, K. Suzuki, T. Yamaguchi, K. Yoneda, Y. Hamada and N. Saito, Proceedings of The 10th International Display Workshops, 267, Fukouka, Japan (2003).
[22] M. Kashiwabara, K. Hanawa, R. Asaki, I. Kobori, R. Matsuura, H. Yamada, T. Yamamoto, A. Ozawa, Y. Sato, S. Terada, J. Yamada, T. Sasaoka, S. Tamura and T. Urabe, SID 04 Digest, 1017 (2004).
[23] A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. . Phillips, J. Appl. Phys. 80 (1996) 6954.
[24] E. F. Schubert; N. E. J. Hunt; M. Micovic; R. J. Malik; D. L. Sivco; A. Y. Cho; G. J. Zydzik, Science 265 (1994) 943.
[25] A. Dodabalapur, L. J. Rothberg, T. M. Miller, and E. W. Kwock, Appl. Phys. Lett. 64 (1994) 2486.
[26] B. Balaganesan, W. J. Shen, and C. H. Chen, Tetrahedron Lett. 44 (2003) 5747.
[27] Hatwar, Tukaram Kisan, EP 1 286 569 A1, (2003).
[28] I. M. Chen, T. Y. Hsu and Franklin C. Hong, Appl. Phys. Lett. 81 (2002) 1899.
[29] A. Dodabalapur, L. J. Rothberg, and T. M. Miller Electron. Lett. 30 (1994) 1000.
[30] L. S. Hung, C. W. Tang, M. G. Mason, P. Raychaudhuri, and J. Madathil, Appl. Phys. Lett. 78 (2001) 544.
[31] L. S. Hung, L. R. Zheng, and M. G. Mason, Appl. Phys. Lett. 78 (2001) 673.
[32] C.-W. Chen, P.-Y. Hsieh, H.-H. Chiang, C.-L. Lin, H.-M. Wu, and C.-C. Wu, Appl. Phys. Lett. 83 (2003) 5127.
[33] H. Riel, S. Karg, T. Beierlein, W. Rieß, and K. Neyts, J. Appl. Phys. 94 (2003) 5290.
[34] M. T. Lee, H. H. Chen, C. H. Liao, C. H. Tsai and C. H. Chen, Appl. Phys. Lett. 85, (2004) 3301.
[35] C. H. Liao, M. T. Lee, and C. H. Tsai and C. H. Chen, Appl. Phys. Lett. 86 (2005) 203507.
[36] T. Matsumoto, T. Nakada, J. Endo, K. Mori, N. Kavamura, A. Yokoi, and J. Kido, SID 03 Digest, 979 (2004).
[37] L. S. Liao, K. P. Klubek, and C. W. Tang, Appl. Phys. Lett. 84 (2004) 167.
[38] C. C. Chang, S.-W. Hwang, C. H. Chen and J.-F. Chen, Appl. Phys. Lett. 87 (2005) 253501.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top