跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 21:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡三進
研究生(外文):San-Chin Tsai
論文名稱:可降解酚之CandidaalbicansTL3及其catechol1,2-dioxygenase之單離與特性探討
論文名稱(外文):Isolation and characterization of a phenol degrading Candida albicans TL3 and the study of its Catechol 1,2-dioxygenase
指導教授:李耀坤李耀坤引用關係
指導教授(外文):Yaw-Kuen Li
學位類別:博士
校院名稱:國立交通大學
系所名稱:應用化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:英文
論文頁數:141
中文關鍵詞:硫酸銨沉澱二維電泳胰蛋白酶轉譯後修飾作用
外文關鍵詞:phenol degradationphenol hydroxylasecatechol-12-dioxygenasecatecholciscis-muconic acidCandida albicans TL312-CTD MALDI-TOF/TOF2-D gelMALDI-TOF/TOF
相關次數:
  • 被引用被引用:0
  • 點閱點閱:269
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
本研究已從土壤裡單離出一株可利用酚做為唯一碳源的酵母菌-Candida albicans TL3;相較於其它可降解酚之微生物而言,這菌株不僅對酚具有較高的耐受性而且分解酚的速率也相對較快,它對酚的降解能力目前是第一次被發現的。基於酵素活性、層析及質譜等分析,我們推論此菌株是經由ortho-fission途徑分解酚。涉及此途徑的相關酵素-phenol hydroxylase和catechol 1,2-dioxydanase兩者皆是可誘導性酵素,當C. albicans TL3被培養在培養液分別含酚濃度是22 mM和10 mM時,可達到最大活性。另外,此菌株除了能降解甲醛樹脂工廠廢液中的酚之外,亦可對甲醛加以降解。
藉由硫酸銨沉澱、Sephadex G-75凝膠過濾和HiTrap Q Sepharose管柱層析,可從C. albicans TL3中分離出一高純度的catechol 1,2-dioxydanase(1,2-CTD);此酵素是由相同的兩個單體所組成的,每一個單體的分子量是32,000 Da且含一個鐵離子。此真菌的1,2-CTD的pI值、最適溫度和最適酸鹼值分別為5.3~5.7、25℃和pH 8.0。由受質特異性之研究顯示,此酵素應屬於type Ι catechol 1,2-dioxydanase。這是首次有關來自真核細胞之catechol 1,2-dioxygenase的研究報導。在二維電泳膠片上,可看到此純化的1,2-CTD具有五個分子量相近但等電點稍微不同的蛋白質點;這五種異構型態的1,2-CTD可能是不同程度的轉譯後修飾作用所造成的。利用Edman降解和MALDI-TOF/TOF對經胰蛋白酶水解後的此1,2-CTD裂解之胜肽片段進行序列分析,所得的序列結果可比對到一與其具高度相同性來自於Candida albicans SC5314的假想蛋白質-CaO19_12036 (GenBank accession no. XM 717691);我們建議此一假想蛋白質應該是一1,2-CTD。
A yeast strain isolated from soil was able to utilize phenol as the sole carbon source and was further identified as Candida albicans TL3. This microbe possesses higher tolerance on phenol (24 mM) as well as stronger activity on the rate of phenol degradation than other microorganisms at 30℃. The capability of this strain on phenol degradation is first reported herein. Based on the enzymatic, chromatographic and mass spectrometric analyses, we concluded that C. albicans TL3 follows the ortho-fission pathway on phenol degradation. The optimal activity of phenol hydroxylase and catechol 1,2-dioxygenase were found when this strain grew in culture media containing 22 mM and 10 mM phenol, respectively. In addition to phenol, C. albicans TL3 also exhibited catalytic power on degrading formaldehyde in wastewater directly obtained from phenolic resin-producing factory.
The catechol 1,2-dioxygenase (1,2-CTD) induced from Candida albicans TL3 was purified via ammonium sulfate precipitation, Sephadex G-75 gel filtration and HiTrap Q Sepharose column chromatography. The enzyme was purified to homogeneity and characterized to be a homodimer, with a molecular weight of 32,000 Da for each subunit. The investigation of this eukaryotic 1,2-CTD revealed that the iron content for each subunit, pI value, optimal temperature, and optimal pH are 1 iron/subunit, 5.3~5.7, 25℃ and pH 8.0, respectively. Substrate analysis showed that the purified enzyme belongs to the type I catechol 1, 2-dioxygenase. The study on this eukaryotic 1,2-CTD was reported for the first time. On 2-D gel analysis of the purified 1,2-CTD, five spots with approximately similar molecular weight but with different pIs were found. These spots were further analyzed by MALDI-TOF mass spectrometry. Results suggested that these spots (isotypes) were derived from the same 1,2-CTD. Peptide sequencing on fragments of 1,2-CTD by Edman degradation and MALDI-TOF/TOF analysis provide information of amino acid sequences for BLAST search, the outcome of the BLAST revealed that this eukaryotic 1,2-CTD has high identity with a hypothetical protein, CaO19_12036, from Candida albicans SC5314 (GenBank accession no. XM 717691). We, thus, suggested that the hypothetical protein should be 1,2-CTD.
Table of Contents

Abstract (Chinese)…………………………………………………………………….I
Abstract (English)…………………………………………………………………...III
Acknowledgements…………………………………………………………………..V
Table of Contents……………………………………………………………………VI
List of Tables……………………………………………………………………...…IX
List of Figures……………………………………………………………………..….X
Chapter 1 Background………………………………………………………………..1
1.1 Introduction……………………………………………………………..1
1.2 References………………………………………………………………6
Chapter 2 Experimental……………………………………………………………..15
2.1 Experimental of Materials……………………………………………..15
2.1.1 Strain………………………………………………………………15
2.1.2 Reagents…………………………………………………………...15
2.1.3 Buffers and solution……………………………………………….16
2.1.4 Equipment………………………………………………………….20
2.2 Experimental of Principles……………………………………………...22
2.2.1. Experimental of Quantitative……………………………………..22
2.2.1.1 Phenol determination………………………………………….22
2.2.1.2 Glucose determination………………………………………...22
2.2.1.3 Formaldehyde determination………………………………….22
2.2.1.4 Protein determination………………………………………….23
2.2.2 Experimental of Chromatographic separations……………………23
2.2.2.1 Ion chromatography…………………………………………...23
2.2.2.2 Reverse phase high-performance liquid chromatography…….24
2.2.2.3 Q sepharose chromatography…………………………………24
2.2.2.4 Gel filtration chromatography………………………………...25
2.2.3 Experimental of Mass Spectrometry Methods…………………….25
2.2.3.1 Gas chromatography-mass spectrometry……………………..25
2.2.3.2 Inductively Coupled Plasma Mass Spectrometry…………….26
2.2.3.3 Quadrupole-time of flight electrospray ionization-mass spectrometry and tandem mass spectrometry…………………26
2.2.3.4 MALDI-TOF-MS and MALDI-TOF/TOF-MS………………27
2.2.4 Others……………………………………………………………...28
2.2.4.1 Salting-out…………………………………………………….28
2.2.4.2 Edman sequencing……………………………………………29
2.2.4.3 Two-dimensional gel electrophoresis…………………………29
2.3 Experimental of Methods………………………………………………31
2.3.1 Phenol determination………………………………………………31
2.3.2 Formaldehye determination………………………………………..31
2.3.3 Glucose determination……………………………………………..31
2.3.4 Protein determination………………………………………………31
2.3.5 Phenol hydroxylase activity assay…………………………………31
2.3.6 Catechol 1,2-dioxygenase activity assay…………………………..32
2.3.7 In-solution digestion……………………………………………….32
2.3.8 In-gel digestion…………………………………………………….33
2.3.9 SDS-PAGE………………………………………………………....34
2.3.10 2-D PAGE…………………………………………………………34
2.3.11 Coomassie blue staining…………………………………………..35
2.4 References………………………………………………………………37
Chapter 3 An isolated Candida albicans TL3 capable of degrading phenol at large concentration………………………………………………………………46
3.1 Abstract…………………………………………………………………46
3.2 Introduction……………………………………………………………..48
3.3 Experimental……………………………………………………………50
3.3.1 Media formulation and microorganism screening…………………50
3.3.2 Cell growth and Phenol degradation……………………………….50
3.3.3 Enzyme activity assays…………………………………………….52
3.3.4 Product analysis and identification………………………………...53
3.3.5 Mass-spectrometric analysis……………………………………….54
3.4 Results and discussion………………………………………………….56
3.4.1 Identification of the isolated strain and its tolerance against phenol…
……………………………………………………………………...56
3.4.2 Cell growth and phenol degradation……………………………….57
3.4.3 Effect of temperature and nitrogen bases on the growth of C.albicans TL3………………………………………………………………..59
3.4.5 Characterization of the pathway of phenol degradation by C. albicans TL3……………………………………………………....60
3.4.6 Application to the treatment of industrial effluent………………....64
3.5 Conclusion………………………………………………………………66
3.6 References………………………………………………………………67
Chapter 4 Purification and characterization of a catechol 1,2-dioxygenase from a phenol degrading Candida albicans TL3…………………………………87
4.1 Abstract………………………………………………………………....87
4.2 Introduction……………………………………………………………..88
4.3 Experimental……………………………………………………………90
4.3.1 Cell culture…………………………………………………………90
4.3.2 Preparation of crude extract and enzyme purification……………..90
4.3.3 Determination of protein concentration……………………………91
4.3.4 Determination of molecular mass………………………………….91
4.3.5 Enzyme activity assays……………………………………….……92
4.3.6 Kinetic measurements………………………………………….......93
4.3.7 Iron analysis………………………………………………………..93
4.4 Results and Discussion…………………………………………………95
4.4.1 Purification of 1,2-CTD……………………………………………95
4.4.2 Characterization of 1,2-CTD………………………………………95
4.5 Conclusion……………………………………………………………...99
4.6 References……………………………………………………………..100
Chapter 5 Proteomic analysis of a catechol 1,2-dioxygenase from a phenol degrading Candida albicans TL3………………………………………………..…120
5.1 Abstract………………………………………………………………..120
5.2 Introduction……………………………………………………………121
5.3 Experimental…………………………………………………………..123
5.3.1 2-D gel electrophoresis…………………………………………...123
5.3.2 In-gel digestion…………………………………………………...123
5.3.3 N-terminal protein sequencing…………………………………...123
5.3.4 Peptide sequencing by MALDI-TOF…………………………….124
5.4 Results and Discussion………………………………………………..125
5.4.1 MALDI-TOF analysis of the isotypes of 1,2-CTD……………….125
5.4.2 Amino acid sequence analysis of 1,2-CTD………………………125
5.5 Conclusion…………………………………………………………….128
5.6 References…………………………………………………………….129

List of Tables

Table 2-1. Compositions of in-solution digestion……………………………………39
Table 2-2. Compositions of SDS-PAGE……………………………………………..40
Table 2-3. Compositions of 2-D PAGE………………………………………………41
Table 3-1. Capability of complete degradation of phenol by various yeasts………...72
Table 3-2. Identification of the phenol-degradation isolated strain………………….73
Table 3-3. Growth of Candida albicans TL3 on differents aromatic and related compounds(200ppm)after seven days in shake-flask…………….......74
Table 3-4. Comparison of enzyme specific activity of Candida albicans TL3……...75
Table 3-5. Effect of temperature on specific enzyme activity of Candida albicans TL3*……………………………………………………………………...76
Table 4-1. Purification of catechol-1,2-dioxygenase from C. albicans TL3……….104
Table 4-2. Substrate specificity of 1,2-CTD from C. albicans TL3………………..105
Table 4-3. The properties of 1,2-CTD from C. albicans TL3……………………...106
Table 4-4. Effects of some metal ions and compounds on the activity of 1,2-CTD from C. albicans TL3 for catechol…………………………………………...107













List of Figures

Figure 1-1. Two common phenol degradation pathways, the ortho- and meta-fission, occur in microorganisms………………………………………………..13
Figure 1-2. Aerobic catabolism of monoaromatic hydrocarbons…………………….14
Figure 2-1. Condensational reaction of phenol and 4-aminoantipyrine……………...42
Figure 2-2. A process of ESI…………………………………………………………43
Figure 2-3. Configuration used in Q-TOF ESI-MS/MS……………………………..44
Figure 2-4. A process of MALDI-TOF………………………………………………45
Figure 3-1. Time-course profiles of cell growth of Candida albicans TL3………….77
Figure 3-2. Consumption of phenol and glucose of Candida albicans TL3………....78
Figure 3-3. The kinetic parameters of phenol biodegradation catalyzed by C. albicans TL3……………………………………………………………………...79
Figure 3-4. Temperature effect on the growth of Candida albicans TL3……………80
Figure 3-5. Comparison of the growth of Candida albicans TL3 with different nitrogen bases.…………………………………………………………..81
Figure 3-6. HPLC analysis of the product of phenol is catalyzed by crude enzyme extract…………………………………………………………………...82
Figure 3-7. GC-mass analysis of the product of phenol is catalyzed by crude enzyme extract…………………………………………………………………...83
Figure 3-8. Ion-chromatographic analysis of the product(s) of catechol is catalyzed by crude enzyme extract……………………………………………………84
Figure 3-9. Electrospray ionization mass analysis (ESI) of the product of catechol is catalyzed by crude enzyme extract……………………………………...85
Figure 3-10. Growth and phenol and formaldehyde consumption of Candida albicans TL3 was cultured on waste water as a sole carbon source…………….86
Figure 4-1. Separation of catechol 1,2-dioxygenase from 50-70% (NH4)2SO4 ppt on a G-75column (2x80 cm)…………………………………..……………108
Figure 4-2. Separation of catechol 1,2-dioxygenase from the catechol 1,2-dioxygenase-containing fractions of G-75 column on a Q-sephadex column…………………………………………………………………109
Figure 4-3. Native molecular mass determination of 1,2-CTD from C. albicans TL3 by -75 column Chromatography………………………………………110
Figure 4-4. SDS-PAGE analysis of 1,2-CTD from C. albicans TL3 in various steps of purification…………………………………………………………….111
Figure 4-5. The mass spectrum of the purified 1,2-CTD from C. albicans TL3 (inset) and the deconvolution of the spectrum to give a molar mass of 31,994 atomic mass units……………………………………………………...112
Figure 4-6. ESI-MS/MS analysis of the product of catechols catalyzed by 1,2-CTD from C. albicans TL3………………………………………………….113
Figure 4-7. Kinetic property of 1,2-CTD from C. albicans TL3 for catechol……...114
Figure 4-8. Kinetic property of 1,2-CTD from C. albicans TL3 for 4-methylcatechol ……….……………………………………………..115
Figure 4-9. Optimal temperature of catechol 1,2-dioxygenase from C. albicans TL3 .………………………………………………………………...…116
Figure 4-10. Optimal pH of catechol 1,2-dioxygenase from C. albicans TL3……..117
Figure 4-11. Thermal stability of catechol 1,2-dioxygenase from C. albicans TL3..118
Figure 4-12. pH stability of catechol 1,2-duoxygenaase from C. albicans TL3……119
Figure 5-1. 2-D gel electrophoresis (pH 3–10 NL) of 1,2-CTD from C. albicans TL3.……………………………………………………………………133
Figure 5-2. 2-D gel electrophoresis (pH 4�o7 NL)of 1,2-CTD from C. albicans TL3…………………………………………………………………….134
Figure 5-3. MALDI-TOF mass spectrometry analysis of 5 1,2-CTD isotypes from C. albicans TL3 on the 2-D gel…………………………………………..135
Figure 5-4. RP-HPLC separation of fragments from trypsin-digested 1,2-CTD of C. albicans TL3…………………………………………………………..136
Figure 5-5. De novo sequences of peptide fragment with m/z 932 Da derived from 1,2-CTD from C. albicans TL3……………………………………….137
Figure 5-6. De novo sequences of peptide fragment with m/z 1199 Da derived from 1,2-CTD from C. albicans TL3……………………………………….138
Figure 5-7. Internal amino acid sequence homology of 1,2-CTD of C. albicans TL3 with hypothetical protein CaO19_12036 of C. albicans SC5314 (XP_722784 XP_431250)…………………………………………….139
Figure 5-8. Amino acid sequence alignment of 1,2-CTDs and 1,2-ClCTD………..140
1.2 References
An HR, Park HJ, Kim ES (2001) Cloning and expression of thermophilic catechol 1,2-dioxygenase gene (catA) from Streptomyces setoniihodochrous. FEMS Microbiol Lett 195:17-22.
Aoki K, Konohana T, Shinke R (1984) Two catechol 1,2-dioxygenase from aniline-assimilating bacterium, Frateuria species ANA-18. Agric Biol Chem48 (8):2097-104.
Aoki K, Nakanishi Y, Murakami S, Shinke R (1990) Microbial metabolism of aniline through a meta-cleavage pathway: isolation of strains and production of catechol 2,3-dioxygenase. Agric Biol Chem 54:205-6.
Antai SP, Crawford DL (1983) Degradation of phenol by Streptomyces setonii. Can J Microbiol 29:142-3.
Bastos AER, Tornisielo VL, Nozawa SR, Trevors JT, Rossi A (2000) Phenol metabolism by two microorganisms isolated from Amazonian forest soil samples. J Ind Microbiol Biotechnol 24:403-9.
Bayly RC, Wigmore GJ (1973) Metabolism of phenol and cresols by mutants of Pseudomonas putida. J Bacteriol 113:1112-20.
Briganti F, Pessione E, Giunta C, Scozzafava A (1997) Purification, biochemicalproperties and substrate specificity of a catechol 1,2-dioxygenase from a phenol degrading Acinetobacter radioresistens. FEBS Lett 416:61-4.
Briganti F, Pessione E, Giunta C, Mazzoli R, Scozzafava A (2000) Purification and catalytic properties of two catechol 1,2-dioxygenase isozymes from benzoate-grown cells of Acinetobacter radioresistens. J Protein Chem 19:709-16.
Broderick JB, O,Halloran TV (1991) Overproduction, Purification, and characterization of chlorocatechol dioxygenase, a non-heme iron dioxygenase with broad substrate tolerance. Biochemistry 30:7349-57.
Chen YP, Lovell CR (1990) Purification and properties of catechol 1,2-dioxygenase from Rhizobium leguminosarum biovar viceae USDA2370. Appl Environ Microbiol 56:1971-3.
Cook KA, Cain RB (1974) Regulation of aromatic metabolism in the fungi: Metabolic control of the 3-oxoadipate pathway in the yeast Rhodotorula mucilaginosa. J Gen Microbiol 85:37-50.
Caposio P, Pessione E, Giuffrida G, Conti A, Landolfo S, Giunta C, Gribaudo G (2002) Cloning and characterization of two catechol 1,2-dioxygenase genes from Acinetobacter radioresistens S13. Res Microbiol 153:69-74.
Eck R, Bettler J (1991) Cloning and characterization of a gene coding for the catechol 1,2-dioxygenase of Acinetobacter sp. mA3. Gene 123:87-92.
El-Sayed WS, Ibrahim MK, Abu-Shady, M, El-Beih, F, Ohmura, N, Saiki, H, Ando A (2003) Isolation and characterization of phenol-catabolizing bacteria from a coking plant. Biosci. Biotechnol. Biochem. 67 (9):2026-9.
Eulberg D, Golovleva LA, SchlOmann M (1997) Characterization of catechol catabolic genes from Rhodococcus erythropolis ICP. J Bacteriol 179: 370-81.
Earhart CA, Vetting MW, Gosu R, Michaud-Soret S, Jr LQ, Ohlendorf DH (2005) Structure of catechol 1,2-dioxygenase from Pseudomonas arvilla. Biochem. Biophys.
Feng Y, Khoo HE, Poh CL (1999) Purification and characterization of gentisate1,2-dioxygenase from Pseudomonas alcaligenes NCIB9867 and Pseudomonas putida NCIB9869. Appl Environ Microbiol 65:946-50.
Ferraroni M, Solyanikova IP, Kolomytseva MP, Scozzafava A, Briganti F (2004) Crystal structure of 4-chlorocatechol 1,2-dioxygenase from the chlorophenol-utilizing gram-positive Rhodococcus opacus 1CP. J Biol Chem 279:27646-55.
Ferraroni M, Seifert J, Travkin VM, Thiel M, Kaschabek S, Scozzafava A, Golovleva L, Schlomann M, Briganti F (2005) Crystal structure of the hydroxyquinol 1,2-dioxygenase from Nocardioides simplex 3E, a key enzyme involved in polychlorinated aromatics biodegradation. J Biol Chem 280:21144-54.
Fewson CA (1967) The identity of the gram-negative bacterium NCIB8250 (‘Vibrio 01’), J Gen Microbiol 48:107-10.
Gurujeyalakshmi G, Oriel P (1989) Isolation of phenol-degrading Bacillus stearothermophilus and partial characterization of the phenol hydroxylase. Appl Environ Microbiol 55:500-2.
Hughes EJL, Bayly RC (1983) Control of catechol meta-cleavage pathway in Alcaligenes eutrophus. J Bacteriol 54:1363-70.
Kim SI, Leem SH, Choi JS, Chung YH, Kim S, Park YM, Lee YN, Ha KS (1997) Cloning and characterization of two catA genes in Acinetobacter lwoffii K24. J Bacteriol 179:5226-31.
Kim SI, Kim SJ, Nam MH, Kim S, Ha KS, Oh KH, Yoo JS, Park YM (2002) Proteomeanalysis of aniline-induced proteins in Acinetobacter lwoffii K24. Curr Microbiol 44:61-6.
Kim SI, Song SY, Kim KW, Ho EM, Oh KH (2003) Proteomic analysis of the benzoate degradation pathway in Acinetobacter sp. KS-1. Res Microbiol 154:697-703.
Kobayashi H, Rittmann BE (1982) Microbial removal of hazardous organic compounds. Environ. Sci. Technol. 16:170–83.
Latus M, Seitz HJ, Eberspächer J, Lingens F (1995) Purification and characterization of hydroxyquinol 1,2-dioxygenase from Azotobacter sp. StrainGP1. Appl Environ Microbiol 61:2453-60.
Maltseva OV, Solyanikova IP, Golovleva LA (1994) Chlorocatechol 1,2-dioxygenase from Rhodococcus erythropolis 1CP. Kinetic and immunochemical comparison with analogous enzymes from gram-negative strains. Eur J Biochem 226:1053-61.
Middelhoven WJ (1993) Catabolism of benzene compounds by ascomycetous and basidiomycetous yeasts and yeast-like fungi. The literature review and in the experimental approach. Antonie Van Leeuwenhoek 63:125-44.
Murakami S, Kodama N, Shinke R, Aoki K (1997) Classification of catechol1,2-dioxygenase family: sequence analysis of a gene for the catechol1,2-dioxygenase showing high specificity for methylcatechols from Gram+ aniline-assimilating Rhodococcus erythropolis AN-13. Gene 185:49-54.
Murakami S, Wang CL, Naito A, Shinke R, Aoki K (1998) Purification and characterization of four catechol 1,2-dioxygenase isozymes from the benzamide-assimilating bacterium Arthrobacter species BA-5-17. Microbiol Res153:163-71.
Nakai C, Horiike K, Kuramitsu S, Kagamiyama H, Nozaki M (1990) Three isoenzymes of catechol 1,2-dioxygenase (pyrocatechase), ����, ����, and ����, from Pseudomonas arvilla C-1. J Biol Chem 265:660-5.
Neujahr HY, Varga JM (1970) Degradation of phenols by intact cells and cell-free preparations of Trichosporon cutaneum. Eur J Biochem 13:37-44.
Neujahr HY, Lindsjo S, Varga JM (1974) Oxidation of phenols by cells and cell-free enzymes from Candida tropicalis. Antonie Van Leeuwenhoek 40:209-216.
Nozaki M (1979) Oxygenases and dioxygenases. Top Curr Chem 78:145-186.
Pessione E, Giuffrida MG, Mazzoli R, Caposio P, Landolfo S, Conti A, Giunta C,Gribaudo G (2001) The catechol 1,2-dioxygenase system of Acinetobacterradioresistens: Isoenzymes, inductors and gene localization. J Biol Chem 382:1253-61.
Rahalkar SB, Joshi SR, Shivaraman N (1993) Photometabolism of aromatic compounds by Rhodopseudomonas palustris. Curr Microbiol 26:1-9.
Ridder L, Briganti F, Boersma MG, Boeren S, Vis EH, Scozzafava A, Verger C,Rietjens IM (1998) Quantitative structure/activity relationship for the rate of conversion of C4-substituted catechols by catechol-1,2-dioxygenase fromPseudomonas putida (arvilla) C1. Eur J Biochem 257:92-100.
Ristanovic B, Muntanjola-Cvetkovic M, Munjko I (1975) Phenol degrading fungi from South Adriatic Sea and Lake Skadar. Eur J Appl Microbiol 1:313-22
Sampaio JP (1999) Utilization of low molecular weight aromatic compounds by heterobasidiomycetous yeasts: Taxonomic implications. Can J Microbiol 45:491-512.
Sauret-Ignazi G, Gagnon J, Beguin C, Barrelle M, Markowicz J, Pelmont J, Toussaint A (1996) Characterization of a chromosomally encoded catechol 1,2-dioxygenase(E.C.1.13.11.1) from Alcaligenes eutroohus CH34. Arch Microbiol 166:42-52.
Semple KT, Cain RB (1996) Biodegradation of phenols by the alga Ochromonas danica. Appl Environ Microbiol 62:1265-73.
Shen XH, Liu ZP, Liu SJ (2004) Functional identification of the gene locus (ncg12319) and characterization of catechol 1,2-dioxygenase in Corybebacterium glutamicum. Biotechnol Lett 26:575-80.
Strachan PD, Freer AA, Fewson CA (1998) Purification and characterization of catechol 1,2-dioxygenase from Rhodococcus rhodochrous NCIM13259 and cloning and sequencing of its catA gene. Biochem J 333:741-7.
Swoboda-Colberg NG (1995) Chemical contamination of the environment: sources, types, and fate of synthetic organic chemicals. In “Microbial transformation and degradation of toxic organic chemicals”, eds Young, L.Y., and Cerniglia, C.E., Wiley-Liss, Inc., USA, 27-74.
Throop WM (1975/1977) Alternative methods of phenol wastewater control. J Hazard Mater 1:319-29.
Van der Meer JR, Eggen RIL, Zehnder AJB, De Vos WM (1993) Sequence analysis of the Pseudomonas sp. Strain P51 tcb gene cluster, which encodes metabolism of chlorinated catechols: evidence for specialization of catechol 1,2-dioxygenase for chlorinated substrates. J Bacteriol 173:2425-34.
Vetting MW, Ohlendorf DH (2000) The 1.8Å crystal structure of catechol 1,2-dioxygenase reveals a novel hydrophobic helical zipper as a subunit linker. Struct Fold Des 8:429-440.
Yap LF, Lee YK, Poh CL (1999) Mechanism for phenol tolerance in phenol-degrading Comamonas testosteroni strain. Appl Microbiol Biotechnol 51:833-40.

2.4 References
Blackstock WP, Weir MP (1999) Proteomics: quantitative and physical mapping of cellular proteins. Trends in Biotechnolgy 17:121-7.
Bradford MM (1976) A rapid and sensitive methods for the quantitation of microgram quantities of protein utilizing the principle for protein-dye binding. Anal Biochem 72:248-54.
Cole RB (1997) Electrospray ionization mass spectrometry: fundamentals, instrumentation and applications. Wiley, New York.
Gorg A, Obermaier C, Boguth G., Harder A, Scheibe B, Wildgruber R, Weiss W (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21:1037-53.
Hayaishi O, Katagiri M, Rothberg S (1957) Studies on oxygenases: pyrocatechase. J Biol Chem 229: 905-20.
Lacoste RJ, Venable SH, Stone JC (1959) Modified 4-aminoantipyrene colorimetric method for phenols. Applications to an acrylic monomer. Anal Chem 31:1246-9.
Nash T (1953) The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J 55:416-21.
Scopes RK (1974) Measurement of protein by spectrophotometry at 205 nm. Anal Biochem 59:277-82.
Varga JM, Neujahr HY (1970) Purification and properties of catechol 1,2-dioxygenase from Trichosporon cutaneum. Eur J Biochem 12:427-34.
Yates JR (2000) Mass spectrometry - from genomics to proteomics. Trends in Genetics 16:5-8.
3.6 References
Antai SP, Crawford DL (1983) Degradation of phenol by Streptomyces setonii. Can J Microbiol 29:142-3.
Bastos AER, Tornisielo VL, Nozawa SR, Trevors JT, Rossi A (2000) Phenol metabolism by two microorganisms isolated from Amazonian forest soil samples. J Ind Microbiol Biotechnol 24:403-9.
Chang SY, Li CT, Hiang SY, Chang MC (1995) Intraspecific protoplast fusion of Candida tropicalis for enhancing phenol degradation. Appl Microbiol Biotechnol 43:534-8.
Chen KC, Lin YH, Chen WH, Liu YC (2002) Degradation of phenol by PPA-immobilized Candida tropicalis. Enzyme Microb Technol 31:490-497.
Chen WM, Chang JS, Wu CH, Chang SC (2004) Characterization of phenol and trichloroethene degradation by the rhizobium Ralstonia taiwanensis. Res in Microbiol 155:672-80.
El-Sayed WS, Ibrahim MK, Abu-Shady M, El-Beih F, Ohmura N, Saiki H, Ando A (2003) Isolation and characterization of phenol-catabolizing bacteria from a coking plant. Biosci Biotechnol Biochem 67 (9):2026-9.
Fialova A, Boschke E, Bely T (2004) Rapid monitoring of the biodegradation of phenol-like compounds by the yeast Candida maltosa using BOD measurements. Int Biodet Biodegr 54:69-76.
Folsom BR, Chapman PJ, Pritchard PH (1990) Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: Kinetics and interaction between substrates. Appl Environ Microbiol 56:1279-85.
Futamata H, Harayama S, Watanabe K (2001) Diversity in kinetics of trichloroethylene-degrading activities exhibited by phenol-degrading bacteria. Appl Microbiol Biotechnol 55:248-53.
Gaal AH, Neujahr J (1981) Induction of phenol-metabolizing enzymes in Trichosporon cutaneum. Arch Microbiol 130:54-8.
Glancer-Soljan M, Landeka Dragicevic VT, Cacic L (2001) Aerobic degradation of formaldehyde in wastewater from the production of melamine resins. Food Technol Biotechnol 39:197-202.
Gurujeyalakshmi G., Oriel P (1989) Isolation of phenol-degrading Bacillus stearothermophilus and partial characterization of the phenol hydroxylase. Appl Environ Microbiol 55:500-2.
Hayaishi O, Katagiri M, Rothberg S (1957) Studies on oxygenases: pyrocatechase. J Biol Chem 229:905-20.
Hirayama KK, Tobita S, Hirayama K (1994) Biodegradation of phenol and monochlorophenols by yeast Rhodotorula glutinis. Water Sci Technol 30:59-66.
Hofmann KH, Vogt U (1987) Induction of phenol assimilation in chemostat cultures of Candida maltosa L4. J Basic Microbiol 27:441-7.
Jeong KC, Jeong EY, Hwang TE, Cho SH (1998) Identification and characterization of Acinetobacter sp.CNU961 able to grow with phenol at high concentrations. Biosci Biotechnol Biochem 62:1830-3.
Kato N, Miyawak N, Sakazawa C (1982) Oxidation of formaldehyde by resistant yeasts Debaryomyces vanriji and Trichosporon penicillatum. Agric Biol Chem 46:655-61.
Kobayashi H, Rittmann BE (1982) Microbial removal of hazardous organic compounds. Environ Sci Technol 16:170–83.
Lacoste RJ, Venable SH, Stone JC (1959) Modified 4-aminoantipyrene colorimetric method for phenols. Applications to an acrylic monomer. Anal Chem 31:1246-9.
Margesin R, Fonteyne PA, Redl B (2005) Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and basidiomycetous yeasts. Res in Microbiol 156:68-75.
Middelhoven WJ (1993) Catabolism of benzene compounds by ascomycetous and basidiomycetous yeasts and yeast-like fungi. The literature review and in the experimental approach. Antonie Van Leeuwenhoek 63:125-44.
Muller RH, Babel W (1994) Phenol and its derivatives as heterotrophic substrates for microbial growth --- an energetic comparison. Appl Microbiol Biotechnol 42:446-51.
Nash T (1953) The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J 55:416-21.
Neujahr HY, Varga JM (1970) Degradation of phenols by intact cells and cell-free preparations of Trichosporon cutaneum. Eur J Biochem 13:37-44.
Neujahr HY, Gaal A (1973) Phenol hydroxylase from yeast: Purification and propcrties of the enzymes from Trichosporon cutancum. Eur J Biochem 35: 386-400.
Rahalkar SB, Joshi SR, Shivaraman N (1993) Photometabolism of aromatic compounds by Rhodopseudomonas palustris. Curr Microbiol 26:1-9.
Ristanovic B, Muntanjola-Cvetkovic M, Munjko I (1975) Phenol degrading fungi from South Adriatic Sea and Lake Skadar. Eur J Appl Microbiol 1:313-22.
Sampaio JP (1999) Utilization of low molecular weight aromatic compounds by heterobasidiomycetous yeasts: Taxonomic implications. Can J Microbiol 45:491-512.
Sala-Trepat JM, Evans WC (1971) The meta-cleavage of catechol by Azotobacter species: 4-oxalocrotonate pathway. Eur J Biochem 20:400-13.
Santos VL, Linardi VR (2001) Phenol degradation by yeasts isolated from industrial effluents. J Gen Appl Microbiol 47:213-21.
Semple KT, Cain RB (1996) Biodegradation of phenols by the alga Ochromonas danica. Appl Environ Microbiol 62:1265-73.
Skoda M, Udaka S (1980) Preferential utilization of phenol rather than glucose by Trichosporon cutaneum possessing the partially constitutive catechol-1,2-dioxygenase. Appl Environ Microbiol 39:1129-33.
Swoboda-Colberg NG (1995) Chemical contamination of the environment: sources, types, and fate of synthetic organic chemicals. In “Microbial transformation and degradation of toxic organic chemicals”, eds Young, L.Y., and Cerniglia, C.E., Wiley-Liss, Inc., USA, 27-74.
Varga JM, Neujahr HY (1970) Purification and properties of catechol-1,2-dioxygenase from Trichosporon cutaneum. Eur J Biochem 12: 427-34.
Yang RD, Humphrey AE (1975) Dynamic and steady state studies of phenol biodegradation in pure and mixed cultures. Biotechnol Bioeng 17:1211-35.
Yap LF, Lee YK, Poh CL (1999) Mechanism for phenol tolerance in phenol-degrading Comamonas testosteroni strain. Appl Microbiol Biotechnol 51: 833-40.
4.6 Referances
Aoki K, Konohana T, Shinke R (1984) Two catechol 1,2-dioxygenase from aniline-assimilating bacterium, Frateuria species ANA-18. Agric Biol Chem 48 (8):2097-104.
Aoki K, Nakanishi Y, Murakami S, Shinke R (1990) Microbial metabolism of aniline through a meta-cleavage pathway: isolation of strains and production of catechol 2,3-dioxygenase. Agric Biol Chem 54:205-6.
Bradford MM (1976) A rapid and sensitive methods for the quantitation of microgram quantities of protein utilizing the principle for protein-dye binding. Anal Biochem 72:248-54.
Briganti F, Pessione E, Giunta C, Scozzafava A (1997) Purification, biochemical properties and substrate specificity of a catechol 1,2-dioxygenase from a phenol degrading Acinetobacter radioresistens. FEBS Lett 416:61-4.
Broderick JB, O,Halloran TV (1991) Overproduction, Purification, and characterization of chlorocatechol dioxygenase, a non-heme iron dioxygenase with broad substrate tolerance. Biochemistry 30:7349-57.
Bull C, Ballou DP (1981) Purification and properties of protocatechuate 3,4-dioxygenase from Pseudomonas putida. J Biol Chem 256: 12673-80.
Caposio P, Pessione E, Giuffrida G, Conti A, Landolfo S, Giunta C, Gribaudo G (2002) Cloning and characterization of two catechol 1,2-dioxygenase genes fromAcinetobacter radioresistens S13. Res Microbiol 153:69-74.
Chen YP, Glenn AR, Dilworth MJ (1985) Aromatic metabolism in Rhizobium trifolii �o catechol 1,2-dioxygenase. Arch Microbiol 141:225-8.
Chen YP, Lovell CR (1990) Purification and properties of catechol 1,2-dioxygenase from Rhizobium leguminosarum biovar viceae USDA2370. Appl Environ Microbiol 56:1971-3.
Eck R, Bettler J (1991) Cloning and characterization of a gene coding for the catechol
1,2-dioxygenase of Acinetobacter sp. mA3. Gene 123:87-92.
Kim SI, Song SY, Kim KW, Ho EM, Oh KH (2003) Proteomic analysis of the benzoate degradation pathway in Acinetobacter sp. KS-1. Res Microbiol;154:697-703.
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970 (London) 227:680-5.
Maltseva OV, Solyanikova IP, Golovleva LA (1994) Chlorocatechol 1,2-dioxygenasefrom Rhodococcus erythropolis 1CP. Kinetic and immunochemical comparison with analogous enzymes from gram-negative strains. Eur J Biochem 226:1053-61.
Murakami S, Kodama N, Shinke R, Aoki K (1997) Classification of catechol 1,2-dioxygenase family: sequence analysis of a gene for the catechol 1,2-dioxygenase showing high specificity for methylcatechols from Gram+ aniline-assimilating Rhodococcus erythropolis AN-13. Gene 185:49-54.
Nakai C, Nakazawa T, Nozaki M (1988) Purification and properties of catechol 1,2-dioxygenase (pyrocatechase) from Pseudomonas putida mt-2 in comparison with that from Pseudomonas arvilla C-1. Arch Biochem Biophys 267:701-13.
Nakai C, Horiike K, Kuramitsu S, Kagamiyama H, Nozaki M (1990) Three isoenzymes of catechol 1,2-dioxygenase (pyrocatechase), ����, ����, and ����, from Pseudomonas arvilla C-1. J Biol Chem 265:660-5.
Nakazawa H, Inoue H, Takeda Y (1963) Characteristics of catechol oxygenase from Brevibacterium fuscum, J Bacteriol 54:65-74.
Neidle EL, Ornston LN (1986) Cloning and expression of Acinetobacter calcoaceticus catechol 1,2-dioxygenase I structural gene catA in Escherichia coil. J Bacteriol 168:815-20.
Neidle EL, Hartnett C, Bonitz S, Ornston LN (1988) DNA sequence of the Acinetobacter calcoaceticus catechol 1,2-dioxygenase I structural gene catA: evidence for evolutionary divergence of intradiol dioxygenase by acquisition of DNA sequence repetitions. J Bacteriol 170:4874-80.
Ridder L, Briganti F, Boersma MG, Boeren S, Vis EH, Scozzafava A, Verger C, Rietjens IM (1998) Quantitative structure/activity relationship for the rate of conversion of C4-substituted catechols by catechol-1,2-dioxygenase from Pseudomonas putida (arvilla) C1. Eur J Biochem 257:92-100.
Scopes RK (1974) Measurement of protein by spectrophotometry at 205 nm. Anal Biochem 59:277-82.
Shen XH, Liu ZP, Liu SJ (2004) Functional identification of the gene locus (ncg12319) and characterization of catechol 1,2-dioxygenase in Corybebacterium glutamicum. Biotechnol Lett 26:575-80.
Strachan PD, Freer AA, Fewson CA (1998) Purification and characterization of catechol 1,2-dioxygenase from Rhodococcus rhodochrous NCIM13259 and cloning and sequencing of its catA gene. Biochem J 333:741-7.
Tsai SC, Tsai LD, Li YK (2005) An isolated Candida albicans TL3 capable of degradingphenol at large concentration. Biosci Biotechnol Biochem 69: 2358-67.
Van der Meer JR, Eggen RIL, Zehnder AJB, De Vos WM (1993) Sequence analysis of the Pseudomonas sp. Strain P51 tcb gene cluster, which encodes metabolism of chlorinated catechols: evidence for specialization of catechol 1,2-dioxygenase for chlorinated substrates. J Bacteriol 173:2425-34.
Varga JM, Neujahr HY (1970) Purification and properties of catechol 1,2-dioxygenase from Trichosporon cutaneum. Eur J Biochem 12: 427-34.
5.6 References
Aoki K, Konohana T, Shinke R (1984) Two catechol 1,2-dioxygenase from an aniline-assimilating bacterium, Frateuria species ANA-18. Agric Biol Chem 48 (8):2097-104.
Aoki K, Nakanishi Y, Murakami S, Shinke R (1990) Microbial metabolism of aniline through a meta-cleavage pathway: isolation of strains and production of catechol 2,3-dioxygenase. Agric Biol Chem 54:205-6.
Briganti F, Pessione E, Giunta C, Scozzafava A (1997) Purification, biochemicalproperties and substrate specificity of a catechol 1,2-dioxygenase from a phenol degrading Acinetobacter radioresisten. FEBS Lett 416:61-4.
Briganti F, Pessione E, Giunta C, Mazzoli R, Scozzafava A (2000) Purification and catalytic properties of two catechol 1,2-dioxygenase isozymes from benzoate-grown cells of Acinetobacter radioresistens. J Protein Chem 19:709-16.
Broderick JB, O,Halloran TV (1991) Overproduction, Purification, and characterization of chlorocatechol dioxygenase, a non-heme iron dioxygenase with broad substrate tolerance. Biochemistry 30:7349-57.
Eulberg D, Golovleva LA, SchlOmann M (1997) Characterization of catechol catabolic genes from Rhodococcus erythropolis ICP. J Bacteriol 179: 370-81.
Ferraroni M, Solyanikova IP, Kolomytseva MP, Scozzafava A, Briganti F (2004) Crystal structure of 4-chlorocatechol 1,2-dioxygenase from the chlorophenol-utilizing gram-positive Rhodococcus opacus 1CP. J Biol Chem 279:27646-55.
Ferraroni M, Seifert J, Travkin VM, Thiel M, Kaschabek S, Scozzafava A, Golovleva L, Schlomann M, Briganti F (2005) Crystal structure of the hydroxyquinol 1,2-dioxygenase from Nocardioides simplex 3E, a key enzyme involved in polychlorinated aromatics biodegradation. J Biol Chem 280:21144-54.
Giuffrida MG, Pessione E, Mazzoli R, Dellavalle G, Braello C, Conti A, Giunta C (2001) Media containing aromatic compounds induce peculiar proteins in Acinetobacter radioresistens, as revealed by proteome analysis. Electrophoresis 22:1705-11.
Kim SI, Leem SH, Choi JS, Chung YH, Kim S, Park YM, Lee YN, Ha KS (1997)
Cloning and characterization of two catA genes in Acinetobacter lwoffii K24. J
Bacteriol 179:5226-31.
Kim SI, Kim SJ, Nam MH, Kim S, Ha KS, Oh KH, Yoo JS, Park YM (2002) Proteome analysis of aniline-induced proteins in Acinetobacter lwoffii K24. Curr Microbiol 44:61-6.
Kim SI, Song SY, Kim KW, Ho EM, Oh KH (2003) Proteomic analysis of the benzoatedegradation pathway in Acinetobacter sp. KS-1. Res Microbiol154:697-703.
Latus M, Seitz HJ, Eberspächer J, Lingens F (1995) Purification and characterization of hydroxyquinol 1,2-dioxygenase from Azotobacter sp. strain GP1. Appl Environ Microbiol 61:2453-60.
Murakami S, Wang CL, Naito A, Shinke R, Aoki K (1998) Purification and characterization of four catechol 1,2-dioxygenase isozymes from the benzamide-assimilating bacterium Arthrobacter species BA-5-17. Microbiol Res153:163-71.
Nakai C, Horiike K, Kuramitsu S, Kagamiyama H, Nozaki M (1990) Three isoenzymes of catechol 1,2-dioxygenase (pyrocatechase), ����, ����, and ����, from Pseudomonas arvilla C-1. J Biol Chem 265:660-5.
Nakai C, Nakazawa T, Nozaki M (1988) Purification and properties of catechol 1,2-dioxygenase (pyrocatechase) from Pseudomonas putida mt-2 in comparison with that from Pseudomonas arvilla C-1. Arch Biochem Biophys 267:701-13.
Pessione E, Giuffrida MG, Mazzoli R, Caposio P, Landolfo S, Conti A, Giunta C, Gribaudo G (2001) The catechol 1,2-dioxygenase system of Acinetobacter radioresistens: Isoenzymes, inductors and gene localization. J Biol Chem382:1253-61.
Ridder L, Briganti F, Boersma MG, Boeren S, Vis EH, Scozzafava A, Verger C, Rietjens IM (1998) Quantitative structure/activity relationship for the rate of conversion of C4-substituted catechols by catechol-1,2-dioxygenase from Pseudomonas putida (arvilla) C1. Eur J Biochem 257:92-100.
Sauret-Ignazi G, Gagnon J, Beguin C, Barrelle M, Markowicz J, Pelmont J, Toussaint A (1996) Characterization of a chromosomally encoded catechol 1,2-dioxygenase(E.C.1.13.11.1) from Alcaligenes eutroohus CH34. Arch Microbiol 166:42-52.
Shen XH, Liu ZP, Liu SJ (2004) Functional identification of the gene locus (ncg12319) and characterization of catechol 1,2-dioxygenase in Corybebacterium glutamicum. Biotechnol Lett 26:575-80.
Strachan PD, Freer AA, Fewson CA (1998) Purification and characterization of catechol 1,2-dioxygenase from Rhodococcus rhodochrous NCIM13259 and cloning and sequencing of its catA gene. Biochem J 333:741-7.
Vetting MW, Ohlendorf DH (2000) The 1.8Å crystal structure of catechol 1,2-dioxygenase reveals a novel hydrophobic helical zipper as a subunit linker. Struct Fold Des 8:429-440.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top