跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.248) 您好!臺灣時間:2023/01/28 12:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊衷核
研究生(外文):Chung-He Yang
論文名稱:以無機量子點及溶膠-凝膠製程製備高效能奈米有機發光元件
論文名稱(外文):Fabrication of High-Efficiency Nano-OLED devices based on Inorganic Quantum Dots and Sol-Gel Process
指導教授:許千樹
指導教授(外文):Chain-Shu Hsu
學位類別:博士
校院名稱:國立交通大學
系所名稱:應用化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:181
中文關鍵詞:發光二極體溶膠凝膠量子點聚芴高分子
外文關鍵詞:Light-emitting DiodeSol-gelQuantum Dotspolyfluorene
相關次數:
  • 被引用被引用:3
  • 點閱點閱:411
  • 評分評分:
  • 下載下載:79
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要分成兩部分,以探討引進無機量子點(Quantum Dots)及溶膠凝膠製程(Sol-Gel process),進而有效提升有機發光二極體之效能。於第一部份,採用鎳催化-Yamamoto聚合及鈀-催化Suzuki(鈴木)偶合法,配合適當的苯基溴(aryl bromide)以及硼酯類(bronic ester)取代基單體,可成功的聚合出一系列含有硫的有機聚芴同元及異元高分子(PFS, PF1, PF3及PF4)。另外合成三種不含硫的聚芴高分子(PF2, PF5及PFC6)與上述含硫高分子以茲區別。這些聚芴高分子則透過FT-IR、元素分析、DSC、TGA、螢光光譜(PL)以及電激發光實驗來做為其定性上的分析。其中PFS, PFC6, PF1 – PF3可發藍光(440-468 nm),而 PF4 – PF5則發黃綠光(540 nm)。迴火實驗證實,相較於同結構的聚芴高分子(PFC6),含硫聚芴高分子的表現出較佳的抗氧化性(PFS),連帶抑制了傳統聚芴高分子常見的光譜偏移問題(keto defect)。電激發光元件可驗證此系列含硫聚芴高分子表現出相當良好的光譜穩定性,在高電壓的操作之下並不會有光譜偏移的現象發生。以高分子PF1所製備的多層電激發光元件 ITO/PEDOT/ PF1/CsF/Al為例,於電壓8V時可達最大亮度2991 cd/m2,並於電流密度75 mA/cm2時達到最大效率1.36 cd/A。另一方面,經由配位基交換製程,此硫原子中的孤對電子可與量子點的空價軌域行配位共價鍵鍵結。以此有機/無機(聚芴高分子/量子點)混成奈米複合材料所製成的電激發光元件,相較於原本未含硫的聚芴高分子來說,表現出更佳的亮度及效率。

以有機半導體所製成的電激發光二極體擁有極佳的亮度及效率,同時具有可商業化的潛力。然而其潛在問題為薄膜態時,發光分子之間經常會彼此堆疊並降低放光效率。在本論文的第二部份,導入了兩個以芴環為主體,以三苯基胺或蒽作為側取代基的藍色發光體,透過溶膠-凝膠製程(sol-gel process)在酸性的環境下與矽源反應(TOES),並研究其自組裝後所形成中孔洞薄膜間的分子吸引力關係。此以芴環為主的兩性藍光界面活性劑,配合矽氧烷所形成的共自組裝薄膜,可有效的將發光分子固定在矽烷所形成的奈米孔洞之中,進而避免分子之間堆疊,以提高放光效率。以此奈米薄膜所製成的電激發光元件,可簡單的利用旋轉塗佈溶液製程而得,而其表現相較於原本未加矽烷的薄膜來說,亦有大幅的增加。繼螢光系統之後,本實驗引入無機磷光銥錯合物,透過簡單的有機合成方法,在三步驟反應之後得到帶有三個長碳鏈羥基的天藍色最終單體。利用帶有唑(carbazole)長碳鏈羥基小分子與此銥錯合物單體,依照不同的重量比例,在與矽烷作用後所得到的奈米薄膜,可有效的製備出高效能的客體/主體有機電激發光元件。此手法將可望建構出一種嶄新的製備奈米有機電激發光元件的製程,以簡化複雜的共蒸鍍及摻混製程,同時增進元件本身的效能。
The goal of this study is aimed to improve the performance of the light emitting diodes by introducing inorganic quantum dots and sol-gel process. In the first part, a new series of sulfide-containing polyfluorene homopolymers and copolymers (PFS, PF1, PF3 and PF4) comprised of aryl bromide and bronic ester moieties were synthesized by Ni(0)-mediated Yamamoto coupling and palladium-catalyzed Suzuki polymerizations. Three other polyfluorenes (PF2, PF5 and PFC6) without sulfur atom in the alkyl side chains were also synthesized by a similar method for comparison purpose. These fluorene-based polymers were characterized using FT-IR spectroscopy, elemental analysis, DSC, TGA, photoluminescence (PL) spectroscopy. The synthesized polymers PFS, PF1-PF3 emit blue light at around 440-468 nm, while copolymers PF4 and PF5 emit green light at 540 nm. In the annealing experiments, these polymer films show better stability against thermal-oxidation than polymer PFC6. Sulfide-containing polymers show not only good electroluminescent color stability, but their EL spectra also remain unchanged at high driving voltage. A double-layer electroluminescent device with the configuration of ITO/PEDOT/PF1/CsF/Al exhibited a stable sky-blue emission with CIE (0.21, 0.23) at 10 V, which showed a maximum brightness of 2991 cd/m2 at 8 V (75 mA/cm2) and a maximum efficiency of 1.36 cd/A. Finally, by ligand exchange process, the sulfur element could form coordination bonding with quantum dots, and PLED devices using these new QDs-containing organic/inorganic hybrid materials as light emitting layers exhibited superior or comparable EL performance compared to those without quantum dots.

Organic semi-conductors show efficient electroluminescence which has led to their commercialization in LEDs. However, they have been marred by the thorniest problem of solid-state quenching. In the second part, we report the synthesis and characterization of two fluorene-based blue amphiphilic emitters containing triphenylamine or anthracene side groups. The formation of the hybrid meso-structured nanocomposites by sol-gel co-assembly with tetraethyl ortho-silicate was demonstrated, and the molecular interactions within the mesophases were studied. The blue light luminescent films made of fluorene-based amphiphile/silica co-assembled nanocomposite have been successfully prepared with enhanced emission. Different kinds of light emitting devices based on these nanocomposites showed improved efficiencies several times higher than the corresponding pristine chromophores. Furthermore, we report the synthesis and characterization of cyclometalated iridium complex which emits sky-blue light. The hybrid meso-structured nanocomposites by sol-gel co-assembly with tetraethyl ortho-silicate and the molecular interactions within the mesophases were also demonstrated. Electroluminescent devices were fabricated using carbazole-based precursor and iridium complex act as host/guest system through co-assembled sol-gel process. Light emitting devices based on these nanocomposites showed improved efficiencies several times higher than similar chromophore elaborated in the literature. The demonstration of nano-sized chromophoric amphiphiles/silica architecture may offer an easier strategy for fabricating high-efficiency phosphorescent OLEDs.
中文摘要………...….…………………………………………………………....I
英文摘要………..…………..………………………………………….....…... IV
目錄……………………………………………………………………...…..…VI
合成目錄………………………………………………………..……………. XII
表目錄…….…………………………………………………………............ XIII
圖目錄…………………………………………………...……………………XV

第一章 緒論…………………………………………………………………...1
1.1 有機電激發光簡介………………………………………………………1
1.1.1有機電激發光的起源……………………………………………..……1
1.1.2 電激發光原理與高分子發光二極體………...……….………………3
1.1.2.1 電激發光原理…...……….…………………….……….……………3
1.1.2.2電極的選擇…...……….…….……………….………….……………6
1.1.2.2.1陽極 (Anode)…...……….………...……….………….……………6
1.1.2.2.2陰極 (Cathode)….……….………...……….………….……………6
1.1.2.3發光層( Emitting layer,EML )….………….………….……………8
1.1.2.5. 雙層與多層結構之元件介紹….……………………….……...….11
1.1.2.5. 高分子發光二極體材料簡介….……………………….….…..….13
1.2. 聚芴高分子材料.………………………………………………..……14
1.2.1 聚芴的發展及性質介紹…………………………….…………..……14
1.2.2 聚芴材料於純藍光中所遭遇到的瓶頸: 發雙體/堆疊亦或酮化缺陷 ? ……………….………………………………….……….…..…17
1.2.3 效率最佳的紅、藍、綠光聚芴材料………………….……….…..…19
1.3 無機奈米晶體(量子點,Quantum Dots)………………………………. 20
1.3.1 奈米晶體的特性……………………………………...………………20
1.3.2量子侷限效應(QCE, Quantum Confinement Effect)………...……21
1.3.3量子點於發光元件上的應用………...…………………………….…22
1.3.3.1金屬氧化物奈米粒子……………...……………………………..…22
第二章 研究動機…………………………………………………………….25
第三章 實驗部份…………………………………………………………….26
3.1 試藥……………………………………………………………………..26
3.2 儀器…………………………………………………………………..…26
3.3 合成部分…………………………………………………….……..…...29
3.3.1單體M1 ~ M6的合成……………………….……………….……..…29
3.3.2聚芴高分子PFS,PFC6,PF1 ~ PF5的合成………………...……..…33
3.3.2.1同元聚芴高分子PFS及PFC6的合成………….………...……..…35
3.3.2.1異元聚芴高分子PF1 ~ PF5的合成………….…………….……..…35
3.3.3 聚芴高分子PFS,PFC6,PF1 ~ PF5的光譜以及元素分析....…….…37
3.4量子點CdSe以及ZnSe的合成………………...…………….….…..…38
3.5配位基交換製程 (Ligand exchange process)...…………….………..…39
第四章 結果與討論………………………………………………………….45
4.1 單體M1 ~ M6之合成與鑑定…………………………………………..45
4.2 聚芴高分子PFS,PFC6,PF1 ~ PF5之合成討論……………………..46
4.3 高分子分子量鑑定……………………………….………...…………..46
4.4 高分子熱性質分析……………………………….………...…………..47
4.5 量子點鑑定……………………………………….………...…………..49
4.6奈米複合材料的鑑定…………………………….………...……….…..51
4.7含硫聚芴高分子材料的熱性質分析……………….………...…….…..58
4.8電化學性質……………….…………………………………...…….…..62
4.9光學性質……………….…………………………………...……….…..68
4.9.1溶劑及薄膜態的UV-PL光譜……………………….…...……….…..68
4.9.2 PL量子效率的量測………………………………….…...……….…..69
4.9.3聚芴高分子與量子點接枝所得奈米複合材料的光學性質……...…..74
4.10有機發光二極體元件製作與光電性質量測……………...……….…..75
4.10.1 ITO 圖形化的製作……………………...……………...……….…..75
4.10.2 發光元件的結構………………...………...……………...….….…..76
4.10.3元件光電性質討論………………...……....……………...….….…..78
4.10.4 奈米複合材料元件光電性質討論……………...……....…………..86
4.10.5 電荷遷移率( Mobility )性質討論……………...……....……….…..92
第五章 結論……………………………………………………………….....94
第六章 緒論………………………………………………………………….95
6.1中孔洞氧化矽材料………………………………………………..…….95
6.2溶膠-凝膠法………………………………………...……………..…….96
6.3界面活性劑(Surfactant)…………………………...……………..…….98
6.4薄膜塗佈的方式(Coating)……………………………………..…….101
6.5中孔洞氧化矽材料的應用……………………………………….…….101
6.6磷光發光二極體材料簡介……………………………………….…….103
6.6.1螢光與磷光…………….……………………………………….…….103
6.6.2主體客體能量傳遞………….………………………………….…….104
6.6.3磷光元件的放光機制……….………………………………….…….105
6.6.4磷光元件的效率……….……………………………………….…….106
6.6.5三原色磷光材料之發展….…………………………………….…….108
6.6.5.1 紅色磷光材料……………………………………………….…….109
6.6.5.2 綠色磷光材料……………………………………………….…….110
6.6.5.3 藍色磷光材料……………………………………………….…….110
6.6.5.4 主發光體材料………….…………………...……………….…….112
第七章 研究動機…………………………………………………………...118
第八章 實驗部份…………………………………………………………...119
8.1 試藥……………………………………………………………………122
8.2 儀器…………………………………………………………………....122
8.3 合成部分…………………………………………………….……..….122
8.4 溶膠-凝膠(sol-gel)製程………………………………….….……..….128
第九章 結果與討論………………………………………………………...131
9.1藍光發光體之合成與鑑定討論…………………………………..……131
9.2 螢光系統……………………………………………………………....132
9.2.1分子模擬…………………………………………………..………....132
9.2.2 X光繞射圖譜 (XRD,X-ray diffraction) …………………..……133
9.2.3 掃瞄式電子顯微鏡 (SEM) 及穿透式電子顯微鏡(TEM).……134
9.2.4 電化學性質,循環伏安計量(Cyclic voltammetry) ……..…..……136
9.2.5 光學性質,紫外可見光譜與螢光光譜分析………..…..…………139
9.2.6 奈米有機發光二極體元件製作與光電性質量測.…..…..…..……145
9.2.6.1發光元件的結構…………………………………….…..………....145
9.2.6.2元件光電性質討論………………………………….…..………....147
9.3 磷光系統……………………………………………………………....153
9.3.1 X光繞射圖譜 (XRD,X-ray diffraction) …………………..……153
9.3.2 掃瞄式電子顯微鏡 (SEM) 及穿透式電子顯微鏡(TEM).……154
9.3.3 電化學性質,循環伏安計量(Cyclic voltammetry) ………..…..…155
9.3.4 光學性質,紫外可見光譜與螢光光譜分析………..…..…………158
9.3.5 奈米有機磷光發光二極體元件製作與光電性質量測..…...………162
9.3.5.1發光元件的結構…………………………………….…..………....162
9.3.5.2元件光電性質討論………………………………….…..………....162
第十章 結論…...…………………………………………………………. ..167
第十一章 參考文獻………………………………………………............. . .168
[1] Bernanose, E.; Comte, M.; Vouaux, P. J. Chim. Phys. 1953, 50, 64.
[2] Bernanose, E.; Vouaux, P. J. Chim. Phys. 1953, 50, 261.
[3] Bernanose, E. J. Chim. Phys. 1955, 52, 396.
[4] Bernanose, E.; Vouaux, P. J. Chim. Phys. 1955, 52, 509.
[5] Pope, M.; Kallmann, H. P.; Magnante, P. J. Chem. Phys. 1963, 38, 2042.
[6] Helfrich, W.; Schneider, W. G. J. Chem. Phys. 1966, 44, 2902.
[7] Roberts, G. G.; McGinnity, M. M.; Barlow, W. A.; Vincett, P. S. Solid State Commun. 1979, 32, 683.
[8] Vincett, P. S.; Barlow, W. A.; Hann, R. A.; Roberts, G. G. Thin Solid Films 1982, 94, 171.
[9] Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
[10] Patridge, R. H. Polymer 1983, 24, 733.
[11] Burrouhted, J. H.; Bradley, D. D. C.; Brown, A. R.; Mackay, R. N.; Friend, R. H.; Burns, P. L.; Homes, A. B. Nature 1990, 347, 539.
[12] Braun, D.; Heeger, A. J. Appl. Phys. Lett. 1991, 58, 1982.
[13] 《科學人》2004年3月號〈捲起來帶著走的顯示器〉
[14] Dresner, J. RCA Rev. 1969, 30, 332.
[15] Brutting, W.; Buchwald, E.; Rgerer, G.; Meier, M.; Zuleeg, K.; Schwoerer, M. Synth. Met. 1997, 84, 677.
[16] Jabbour, G. E.; Kippelen, B.; Armstrong, N. R.; Peyghambarian, N. Appl. Phys, Lett. 1998, 73, 1185.
[17] Adachi, C.; Tokito, S.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1988, 55, 1489.
[18] Adachi, C.; Tokito, S.; Tsutsui, T.; Saito, S. Jpn. J. Appl. Phys. 1988, 27, L269.
[19] Adachi, C.; Tsutsui, T.; Saito, S. Jpn, J. Appl. Phys. 1988, 27, L713.
[20] Kido, J. Bull. Electrochem. 1994, 10, 1.
[21] Kido, J.; Kimura, M.; Nagi, K. Science 1995, 267, 1332.
[22] Cao, G. Y.; Treacy G. M.; Klavetter, F.; Colaneri, N.; Heeger, A. J. Nature 1993, 357, 111.
[23] Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem. Int. Ed. 1998, 37, 402.
[24] Hwang, D. H.; Kim, S. T.; Li, X. C.; Chuah, B. S.; DeMello, J. C.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Abstr. Pap. Am. Chem. S. 1997, 213, 319.
[25] Koch, F.; Heitz, W. Macromol. Chem. Phys. 1997, 198, 1531.
[26] Pfeiffer, S.; Horhold, H. H. Macromol. Chem. Phys. 1997, 200, 1870.
[27] Sarnecki, G. J.; Brun, P. L.; Kraft, A.; Reiend, R. H.; Holmes, A. B. Synth. Met. 1993, 55, 91.
[28] Hoger, F. W. S.; Zhang, C.; Pakbz, K.; Heeger, A. J. Polym. Prepr. 1993, 34, 197.
[29] Gurge, R. M.; Sarker, A.; Lathti, P. M.; Hu, B.; Karasz, F. E. Macromolecules 1996, 29, 4287.
[30] Gowri, R.; Mandal, D.; Shivkumar, B.; RamaKrishnan, S. Macromolecules 1998, 31, 1819.
[31] Leclerc, M.; Diaz, F. M.; Wegner, G. Macromol. Chem. 1989, 190, 3105.
[32] Mao, H.; Holdcroft, S. Macromolecules 1992, 25, 554.
[33] Gill, R. E.; Malliaras, G. G.; Wildeman, J.; Hadziioannou, G. Adv. Mater. 1994, 6, 132.
[34] Berggren, M.; Inganas, O.; Gustafsson, G.; Rasmusson, J.; Andwersson, M. R.; Hjertberg, T.; Wennerstorm, O. Nature 1994, 372, 444.
[35] Andwersson, M. R.; Berggren, M.; Inganas, O.; Gustafsson, G.; Gustafesson-Carlberg, J. C.; Selse, D.; Hjerberg, T.; Wennerstorm, O. Macromolecules 1995, 28, 7525.
[36] Berggren, M.; Gustafsson, G.; Inganas, O.; Andwersson, M. R.; Hjerberg, T.; Wennerstorm, O. J. Appl. Phys. 1994, 76, 7530.
[37] Yangf, Y.; Pei, Q.; Heeger, A. J. J. Appl. Phys. 1996, 79, 934.

[38] Uchida, M.; Ohmori, Y.; Orishima, C. M.; Yoshino, K. Synth. Met. 1993, 57, 4168.
[39] Pei, Q.; Yang, Y. J. Am. Chem. Soc. 1996, 118, 7416.
[40] Grell, M.; Bradley, D. D. C.; Inbasekaran, M.; Woo, E. P. Adv. Mater. 1997, 9, 798.
[41] (a) Fukuda, M.; Sawada, K.; Yoshino, K. Jpn. J. Appl. Phys. 1989, 28, 1433. (b) Fukuda, M.; Sawada, K.; Morita, S.; Yoshino, K. Synth. Met. 1991, 41-43, 855.
[42] (a) Kreyenschmidt, M.; Klärner, G.; Fuhrer, T.; Ashenhurst, J.; Karg, S.; Chen, W. D.; Lee, V. Y.; Scott, J. C.; Miller, R. D. Macromolecules 1998, 31, 1099. (b) Klärner, G.; Miller, R. D. Macromolecules 1998, 31, 2007.
[43] (a) Pei, Q.; Yu, G.; Yang, Y. PCT Patent WO 97/33323, 1997. (b) Pei, Q.; Yu, G.; Yang, Y. US Patent 5,900,327, 1999.
[44] (a) Woo, E. P. ; Shiang, W. R. ; Inbasekaran, M. ; Roof, G. R. US Patent 5,962,631, 1999. (b) Woo, E. P. ; Shiang, W. R. ; Inbasekaran, M. ; Roof, G. R.; Bernius, M. T.; Wu. W. US Patent 6,169,163 B1, 2001. (c) Woo, E. P. ; Shiang, W. R. ; Inbasekaran, M. ; Roof, G. R.; Bernius, M. T.; Wu. W. US Patent 6,512,083, 2003. (d) Woo, E. P. ; Shiang, W. R. ; Inbasekaran, M. ; Roof, G. R.; Bernius, M. T.; Wu. W. US Patent 6,514,632, 2003.
[45] (a) Ranger, M.; Leclerc, M. Chem. Commun. 1997, 1597. (b) Ranger, M.; Rondeau, M.; Leclerc, M. Macromolecules 1997, 30, 7686.
[46] Neher, D. Macro. Rapid Commun. 2001, 1365.
[47] (a) Grell, M.; Bradley, D. D. C.; Long, X.; Chamberlain, T.; Inbasekaran, M.; Woo, E. P.; Soliman, M. Acta Polym. 1998, 49, 439. (b) Schartel, B.; Wachtendorf, V.; Grell, M.; Bradley, D. D. C.; Hennecke, M. Phys. Rev. B 1999, 60, 277.
[48] Grell, M.; Knoll, W.; Lupo, D.; Miesel, A.; Miteva, T.; Neher, D.; Nothofer, H.-G.; Scherf, U.; Yasuda, A. Adv. Mater, 1999, 11, 671.

[49] (a) Grell, M.; Bradley, D. D. C. Adv. Mater, 1999, 11, 895. (b) Whitehead, K. S.; Grell, M.; Bradley, D. D. C.; Jandke, M.; Strohriegl, P. Appl. Phys. Lett. 2000, 76, 2946.
[50] Lemmer, U.; Heun, S.; Mahrt, R. F.; Scgerf, U.; Hopmeier, M.; Siegner, U.; Göbel, E. O.; Müllen, K.; Bässler, H. Chem. Phys. Lett, 1995, 240, 373.
[51] Bilznyuk, V. N.; Carter, S. A.; Scott, J. C.; Klärner, G.; Miller, R. D.; Miller, D. C. Macromolecules 1999, 32, 361.
[52] (a) Lee, J. -I.; Klärner, G.; Miller, R. D. Chem. Mater. 1999, 11, 1083. (b) Klärner, G.; Lee, J. I.; Lee, V. Y.; Chan, E.; Chen, J. P.; Nelson, A.; Markiewicz, D.; Siemens, R.; Scott, J. C.; Miller, R. D. Chem. Mater. 1999, 11, 1800. (c) Klärner, G.; Lee, J. I.; Davey, M. H.; Miller, R. D. Adv. Mater. 1999, 11, 115.
[53] Herz, L. M.; Philips, R. T. Phys. Rev. B. 2000, 61, 13691.
[54] Tang, H. Z.; Fujiki, M.; Zhang, Z. -B.; Torimitsu K.; Motonaga, M. Chem. Commun. 2001, 2426.
[55] Zeng, G.; Yu, W. -L.; Chua, S. -J.; Huang, W. Macromolecules 2002, 35, 6907.
[56] Panozzo, S.; Vial, J. -C.; Kervela, Y.; Stéphan, O. J. Appl. Phys. 2002, 92, 3495.
[57] (a) List, E. J. W.; Guentner, R.; de Freitas, P. S.; Scherf, U. Adv. Mater. 2002, 14, 374. (b) Gaal, M.; List, E. J. W.; Scherf, U. Macromolecules 2003, 36, 4236. (c) Romaner, L.; Pogantsch, A.; de Freitas, P. S.; Scherf, U.; Gaal, M.; Zojer, E.; List, E. J. W. Adv. Funct. Mater. 2003, 13, 597. (d) Gamerith, S.; Gadermaier, C.; Scherf, U.; List, E. J. W. Phys. Stat. Sol. 2004, 201, 1132.
[58] Gong, X.; Iyer, P. K.; Moses, D. Bazan, G. C.; Heeger, A. J.; Xiao, S. S. Adv. Funct. Mater. 2003, 13, 25.
[59] (a) Setayesh, S.; Grimsdale, A. C.; Weil, T.; Enkelmann, V.; Müllen, K.; Meghdadi, F.; List, E. J. W.; Leising, G. J. Am. Chem. Soc. 2001, 123, 946. (b) Jacob, J.; Zhang, J.; Grimsdale, A. C.; Müllen, K.; Gaal, M.; List, J. W. Macromolecules 2003, 36, 8240.
[60] (a) Marsitzky, D.; Murray, J.; Scott, J. C.; Carter, K. R. Chem. Mater. 2001, 13, 4285. (b) Lim, E.; Jung B. J.; Shim, H. K. Macromolecules 2003, 36, 4288. (c) Cho, H. J.; Jung B. J.; Cho, N. S.; Lee, J.; Shim, H. K. Macromolecules 2003, 36, 6704. (d) Yu, W.-L.; Pei, J.; Cao, Y.; Huang, W.; Heeger, A. J. Chem. Commun. 1999, 1837. (e) Pei, J.; Yu, W.-L.; Huang, W.; Heeger, A. J. Chem. Commun. 2000, 1631.
[61] Scanducci de Freitas, P.; Scherf, U.; Collon, M.; List, E. J. W. e-Polymers, 2002. no. 009.
[62] Zojer, E.; Pogantsch, A.; Hennebicq, E.; Beljonne, D.; Brédas, J.; List, E. J. W. J. Chem. Phys. 2002, 117, 6794.
[63] Kulkarni, A. P.; Jenekhe, S. A. Macromolecules 2003, 36, 5285.
[64] (a) Chou, C. H.; Shu, C. F. Macromolecules 2002, 35, 9673. (b)Wu, F. I.; Reddy, D. S.; Shu, C. F.; Liu, M. S.; Jen, A. K. Y. Chem. Mater. 2003, 15, 269. (c) Shu, C. F.; Dodda, R.; Wu, F. I.; Liu, M. S.; Jen, A. K. Y. Macromolecules 2003, 36, 6698.
[65] (a) Marsitzky, D.; Vestberg, R.; Blainey, P.; Tang, B. T.; Hawker, C. J.; Carter, K. R. J. Am. Chem. Soc. 2001, 123, 6965. (b) Tang, H. J.; Fujiki, M.; Zhang, Z. B.; Torimitsu, K.; Motonaga, M. Chem. Commun. 2001, 2426.
[66] (a) Inaoka, S.; Advincula, R. Macromolecules 2002, 35, 2426. (b) Yu, W.-L.; Pei, J.; Huang, W.; Heeger, A. J. Adv. Mater. 2000, 12, 828. (c) Zeng, G.; Yu, W.-L.; Chua, S.-J.; Huang, W. Macromolecules 2002, 35, 6907. (d) Vak, D.; Chun, C.; Lee, C. L.; Kim, J. J.; Kim, D. Y. J. Mater. Chem. 2004, 14, 1342.
[67] (a) Tamaki, R.; Tanaka, Y.; Asuncion, M. Z.; Choi, J.; Laine, R. M. J. Am. Chem. Soc. 2001, 123, 12416. (b) Xiao, S.; Nguyen, M.; Gong, X.; Cao, Y.; Wu, H.; Moses, D.; Heeger, A. J. Adv. Funct. Mater. 2003, 13, 25.
[68] Miteva, T.; Meisel, A.; Knoll, W.; Nothofer, H. G.; Scherf, U.; Müller, D. C.; Meerholz, K.; Yasuda, A.; Neher, D. Adv. Mater. 2001, 13, 565.
[69] Müller, C. D.; Falcou, A.; Reckefuss, N.; Rojahn, M.; Widerhirn, V.; Rudati, P.; Frohne, H.; Nuyken, O.; Becker, H.; Meerholz, K. Nature, 2003, 421, 829.
[70] Herguth, P.; Jiang, X.; Liu, M. S.; Jen, A. K.-Y. Macromolecules 2002, 35, 6094.
[71] Yang, J.; Jiang, C.; Zhang, Y.; Yang, R.; Yang, W.; Hou, Q.; Cao, Y. Macromolecules 2004, 37, 1211.
[72] (a) Bruchez, M. J.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281, 2013. (b) Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Libchaber, A. Science 2002, 298, 1759.
[73] Klimov, V. I.; Mikhailovsky, A. A.; Xu, S.; Malko, A.; Hollingsworth, J. A.; Leatherdale, C. A.; Eisler, H.; Bawendi, M. G. Science 2000, 290, 314.
[74] (a) Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425. (b) Leatherdale, C. A.; Kagon, C. R.; Morgan, N. Y.; Empedocles, S. A.; Kastner, M. A.; Bawendi, M. G. Phys. Rev. B 2000, 62, 2669.
[75] Coe, S.; Woo, W.-K.; Bawendi, M. G.; Bulovic, V. Nature 2002, 420, 800.
[76] Lee, J.; Sundar, V. C.; Heine, J. R.; Bawendi, M. G.; Jensen, K. F. Adv. Mater. 2000, 12, 1102.
[77] Schlamp, M. C.; Peng, X. G.; Alivasators, A. P. J. Appl. Phys. 1997, 82, 5837.
[78] Gao, M. Y.; Richter, B.; Kirstein, S. Adv. Mater. 1997, 9, 802.
[79] Coe, S.; Woo, W.-K.; Steckel. J. S.; Bawendi, M. G.; Bulovic, V. Organic. Electronics 2003, 4, 123.
[80] Chaudhary, S.; Ozkan, M.; Warren, C. W. Chan. J. Appl. Phys. 2004, 84, 2925.
[81] (a) Peng, Z. A.; Peng, X. J. Am. Chem. Soc. 2001, 123, 184. (b) Peng, Z. A.; Peng, X. J. Am. Chem. Soc. 2002, 124, 3343.
[82] (a) Peng, X.; Manna, L.; Yang, W. D.; Wickham. J.; Scher. E.; Kadavanich. A.; Alivisatos, A. P. Nature 2000, 404, 59. (b) Kim, F.; Song, J.; Yang, P. J. Am. Chem. Soc. 2002, 124, 14316.
[83] (a) Alivisatos, A. P. Science 1996, 271, 933. (b) Chen, C. C.; Herhold, A. B.; Johnson, C. S.; Alivisatos. A. P. Science 1997, 276, 398.

[84] (a) Takagahara, T.; Takeda, K. Phys. Rev. B 1992, 46, 398. (b) S. Veprek, Thin Solid Films. 1997, 297, 145.
[85] (a) Carter, S. A.; Scott, J. C.; Brock, P. J. Appl. Phys. Lett. 1997, 71, 1145. (b) Kim, Y. K.; Lee, K. Y.; Kwon, O. K.; Shin, D. M.; Sohn, B. C.; Choi, J. H. Synth. Met. 2000, 111-112, 207.
[86] Lee, K.; Sariciftci, N. S.; Heeger, A. J. Synth. Met. 1995, 69, 445.
[87] Achermann, M.; Petruska, M. A.; Kos, S.; Smith, D. L.; Koleske, D. D.; Klimov, V. I. Nature 2004, 429, 642.
[88] Mueller, A. H.; Petruska, M. A.; Achermann, M.; Werder, D. J.; Akhadov, E. A.; Koleske, D. D.; Hoffbauer, M. A. Klimov, V. I. Nano Lett. 2005, 5, 1039.
[89] Mattoussi, H.; Radzilowski, L. H.; Dabbousi, B. O.; Thomas, E. L.; Bawendi, M. G.; Rubner, M. F. J. Appl. Phys. 1998, 83, 7965.
[90] Himket, R. A. M.; Talapin, D. V.; Weller, H. J. Appl. Phys. 2003, 93, 3509.
[91] Yang, H.; Holloway, P. H. J. Phys. Chem. B 2003, 107, 9705.
[92] Skaff, H.; Sill, K.; Emrick, T. J. Am. Chem. Soc. 2004, 126, 11322.
[93] Woo, E. P.; Inbasekaran, M.; Shiang, W.; Roof, G. R. International Patent, WO 97/05184, 1997.
[94] Marcel, W. J.; Beulen, M. K.; Frank, C. J. M.van Veggel.; David, N. R. Langmuir 1998, 14, 7463.
[95] Pilgram, K.; Zupan, M.; Skiles, R. J. Heterocycl. Chem. 1970, 7, 629.
[96] Miteva, T.; Meisel, A.; Knoll, W.; Nothofer, H. G.; Scherf, U.; Muller, D. C.; Meerholz, K.; Yasuda, A.; Neher, D. Adv. Mater. 2001, 13, 565.
[97] Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
[98] Querner, C.; Reiss, P.; Bleuse, J.; Pron, A. J. Am. Chem. Soc. 2004, 126, 11574.
[99] Zhou, X.; He, J.; Liao, L. S.; Lu, M.; Ding, X. M.; Hou, X. Y.; Zhang, X. M.; He, X. Q.; Lee, S. T. Adv. Mater. 2000, 12, 265.
[100] Chen, K. B.; Chen, M. H.; Yang, S. H.; Hsieh, C. H.; Hsu, C. S.; Chen, C. C,; Chien, H. J. J. Polym. Sci. A. Polym. Chem. 2006, 44, 5378.
[101] Zhou, W.; Cao, T.; White, J. M. Adv. Funt. Mater. 2004, 14, 783.
[102] Leeuw, D. M.; Simenon, M. M. J.; Brown, A. R.; Einerhand, R. E. F. Synth. Met. 1997, 87, 53.
[103] Janietz, S.; Bradley, D. D. C.; Grell, M.; Giebeler, C.; Inbasekaran, M.; Woo, E. P. Appl. Phys. Lett. 1998, 73, 2453.
[104] Fang, Q.; Yamamoto, T. Macromolecules 2004, 37, 5894.
[105] (a) Nethercot, A. H. Phys. Rev. Lett. 1974, 33, 1088. (b) Brus, L. E. J. Chem. Phys. 1983, 79, 5566.
[106] Piromreun, P.; Oh, H.; Shen, Y.; Malliaras, G. G.; Scott, J. C.; Brock, P. J. Appl Phys Lett. 2000, 77, 2403.
[107] (a) P. W. M. Blom.; M. J. M. de Jong.; J. J. M. Vleggaar. Appl. Phys. Lett. 1996, 68, 3308. (b) D. Chirvase.; Z. Chiguvare.; M. Knipper.; J. Parisi.; V. Dyakonov.; J. C. Hummelenc. J. Appl. Phys. 2003, 93, 3376.
[108] Manabe K.; Hu W.; Matsumura M.; Naito H. J. Appl. Phys. 2003, 94, 2024.
[109] Sing, K. S. W.; Everett, D. H.; Haul, R. H.; Moscou, W. L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewaka, T. Pure Appl. Chem. 1985, 57, 603.
[110] Raman, N.; Anderson, M.; Brinker, C. J. Chem. Mater. 1996, 8, 1682.
[111] (a) Brinker, C. J.; Lu. Y.; Sellinger A.; Fan. H. Adv. Mater. 1999, 11, 579. (b) Lu, Y.; Fan, H.; Stump, A.; Ward, T. L.; Rieker, T.; Brinker, C. J. Nature 1999, 398, 223.
[112] (a) Yang. H. G.; Kuperman, A.; Coombs, N.; Mamiche-Afara, S.; Ozin, G. A. Nature 1996, 379, 703. (b) Yang. H. G.; Coombs, N.; Sokolov, I.; Ozin, G. A. J. Mater. Chem. 1997, 7, 1285.
[113] Ko, E. I. ‘Sol-gel Process’, Handbook of Heterogeneous Catalysis ed. By Ertl, G.; Knozinger, H.; Weitkamp, J. VCH 1997, 1, 86.
[114] (a) Lu, Y.; Ganguil, R.; Drewien, C. A.; Anderson, M. T.; Brinker, C. J.; Gong, W.; Guo, Y.; Soyez, Z.; Dunn, B.; Huang, M. H.; Zink, J. I. Nature 1997, 389, 364. (b) Sellinger, A.; Weiss, P. M.; Nguyen, A.; Lu, Y.; Assink, R. A.; Gong, W.; Brinker, C. J. Nature 1998, 394, 256. (c) Yang, Y.; Lu, Y,; Lu, M.; Huang, J.; Haddad, R.; Xomeritakis, G.; Liu, N.; Malanoski, A. P.; Sturmayr, D.; Fan, H.; Sasaki, D. Y.; Assink, R. A.; Shelnutt, J. A.; Swol, F. V.; Lopez, G. P.; Burns, A. R.; Brinker, C. J. J. Am. Chem. Soc. 2003, 125, 1269.
[115] (a) Ryoo, R.; Ko, C. H.; Cho, S. J.; Kim, J. M. J. Phys. Chem. B 1997, 101, 10610. (b) Ko, C. H.; Kim, J. M.; Ryoo, R. Microporous and Mesoporous Mater. 1998, 21, 235.
[116] (a) Zhao, D.; Yang, P.; Melosh, N.; Feng, J.; Chmelka, B. F.; Stucky, G. D. Adv. Mater. 1998, 10, 1380. (b) Zhao, D.; Yang, P.; Margolese, D. I.; Feng, J.; Chmelka, B. F.; Stucky, G. D. Chem. Comm. 1998, 2499. (c) Yang, P.; Wirnsberger, G.; Huang, H. C.; Cordero, S. R.; McGehee, M. D.; Scott, B.; Deng, T.; Whitesides, G. M.; Chmelka, B. F.; Buratto, S. K.; Stucky, G. D. Science 2000, 287, 465.
[117] Cagnol, F.; Grosso, D.; Soler-Illia, G. J. deA. A.; Crepaldi, E. L.; Babonneau, F.; Amenitsch, H.; Sanchez, C. J. Mater. Chem. 2003, 13, 61.
[118] Doshi, D. A.; Gibaud, A.; Goletto, V.; Lu, M.; Gerung, H.; Ocko, B.; Han, S. M.; Brinker, C. J. J. Am. Chem. Soc. 2003, 125, 11646.
[119] Lin, H. P.; Mou. C. Y. Acc. Chem. Res. 2002, 35, 927.
[120] Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W. J. Chem. Soc. Faraday Trans. 1976, 72, 1525.
[121] (a) Tanford, C. ‘ The Hydrophobic Effect’, New York. Wiley. 1973. (b) Henriksson, U.; Blackmore, E. S.; Tiddy, J. T.; Soderman, O. J. Phys. Chem. 1992, 96, 3894. (c) Hyde. S. T. Pure Appl. Chem. 1992, 64, 1617.
[122] Zhao, D.; Huo, Q.; Feng, J.; Chemelka, B. F. Stucky, G. D. J. Am. Chem. Soc. 1998, 120, 6024.
[123] (a) Huo, Q.; Leon, R.; Petroff, P. M.; Stucky, G. D. Science 1995, 268, 1324. (b) Huo, Q.; David, O.; Margolese, I.; Stucky, G. D. Chem. Mater. 1996, 8, 1147.
[124] Scriven, L. E.; Brinker, C. J.; Clark, D. E.; Ulrich, D. R. Better ceramics Through ChemistryⅢ eds. 1998, 717.
[125] Tsai, C.; Tam, S.; Lu, Y.; Brinker, C. J. J. Membr. Sci. 2000, 169, 255.
[126] Domansky, K.; Liu, J.; Wang, L.-Q.; Engelhard, M. H.; Baskaran, S. J. Mater. Res. 2001, 16, 2810.
[127] Yang, P. D.; Wirnsberger, G.; Huang, H. C.; Cordero, S. R.; McGehee, M. D.; Scott, B.; Deng, T.; Whitesides, G. M.; Chmelka, B. F.; Buratto, S. K.; Stucky, G. D. Science 2000, 287, 465.
[128] (a) Braun, I.; Ihlein, G.; Laeri, F.; Nockel, J.; Schulz-Ekloff, G.; Schulth, F.; Vietze, U.; Weiss, O.; Wohrle, D. Appl. Phys. B 2000, 70, 335. (b) M. Ganschow, I. Braun, G. Schulz-Ekloff, D. Wohrle, Host-Guest Systems Based on Nanoporors Crystals, WILEY-VCH Verlog GmbH and Co., Weinheim, 2003.
[129] (a) Miller, R. D. Science 1999, 286, 421. (b) Fan, H. Y. et. al, J. Non-Cryst. Solids 2001, 285, 79.
[130] Okabe, A.; Fukushima, T.; Ariga, K.; Aida, T. Angew. Chem. Int. Ed. 2002, 41, 3414.
[131] Lu, Y.; Yang, Y.; Sellinger, A.; Lu, M.; Huang, J.; Fan, H.; Haddad, R.; Lopez, G.; Burns, A. R.; Sasaki, D. Y.; Shelnutt, J.; Brinker, C. J. Nature 1999, 410, 913.
[132] Helfrich, W.; Schneider, W. G. J. Chem. Phys. 1966, 44, 2902.
[133] Roberts, G. G.; McGinnity, M. M.; Barlow, W. A.; Vincett, P. S. Solid State Commun. 1979, 32, 683.
[134] Vincett, P. S.; Barlow, W. A.; Hann, R. A.; Roberts, G. G. Thin Solid Film 1982, 94, 171.
[135] Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
[136] (a) Patridge, R. H.; Polymer 1983, 24, 733. (b) Burrouhted, J. H.; Bradley, D. D. C.; Brown, A. R.; Mackay, R. N.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature 1990, 347, 539.
[137] (a) Braun, D.; Heeger, A. Appl. Phys.Lett. 1991, 58, 1982. (b) Chen, C. H.; Shi, J.V.; Tang, C. W. Marcomol. Symp. 1997, 125, 1.
[138] (a) Dresner, J. RCA Rev. 1969, 30, 332. (b) Brutting, W.; Buchwald, E.; Rgerer, G.; Meier, M.; Zuleeg, K.; Schwoerer, M. Synth. Met. 1997, 84, 677.
[139] Tsutsui, T.; Yang, M. J.; Yahiro, M.; Nakamura, K.; Watanabe, T.; Tsuji, T.; Fukuda, M.; Wakimoto, T.; Miyaguchi, S. Jpn. J. Appl. Phys. 1999, 38, L1502.
[140] O’Brien, D. F.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Appl. Phys. Lett. 1999, 74, 442.
[141] Adachi, C.; Baldo, M. A.; Forrest, S. R.; Lamansky, S.; Thompson, M. E.; Kwong, R. C. Appl. Phys. Lett. 2001, 78, 1622.
[142] (a) Okada, S.; Iwawaki, H.; Furugori, M.; Kamatani, J.; Igawa, S.; Moriyama, T.; Miura, S.; Tsuboyama, A.; Takiguchi, T.; Mizutani, H. SID’02 Digest, 2002, 1360. (b) Tsuboyama, A.; Iwawaki, H.; Furugori, M.; Mukaide, T.; Kamatani, J.; Igawa, S.; Moriyama, T.; Miura, S.; Takiguchi, T.; Okada, S.; Hoshino, M.; Ueno, K. J. Am. Chem. Soc. 2003, 125, 12971.
[143] Zheng, Y.; Liang, Y.; Zhang, H.; Lin, Q.; Chuan, G.; Wang, S. Mater. Lett. 2002, 53, 52.
[144] Tung, Y. L.; Wu, P. C.; Liu, C. S.; Chi, Y.; Yu, J. K.; Hu, Y. H.; Chou, P. T.; Peng, S. M.; Lee, G. H.; Tao, Y.; Carty, A. J.; Shu, C. F.; Wu, F. I. Organometallics 2004, 23, 3745.
[145] Baldo, M. A.; Lamansky, S.; Burrows, P. E.; Thompson, M. E.; Forrest, S. R. Appl. Phys. Lett. 1999, 75, 4.
[146] Watanabe, T.; Nakamura, K.; Kawami, S.; Fukuda, Y.; Tsuji, T.; Wakimoto, T.; Miyaguchi, S.; Yahiro, M.; Yang, M. J.; Tsutsui, T. Synth. Met. 2001, 122, 203.
[147] Ikai, M.; Ichinosawa, S.; Sakamoto, Y.; Suzuki, T.; Taga, Y. Appl. Phys. Lett. 2001, 79, 156.
[148] Adachi, C.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. J. Appl. Phys. 2001, 90, 5048.
[149] Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Nature (London), 2000, 403, 750.
[150] D’Andrade, B. W.; Baldo, M. A.; Forrest, S. R. Appl. Phys. Lett. 2001, 79, 7.
[151] Adachi, C.; Kwong, R. C.; Djurovich, P.; Adamovich, V.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Appl. Phys. Lett. 2001, 79, 2082.
[152] Tokito, S.; Iijima, T.; Suzuri, Y.; Kita, H.; Tsuzuki, T.; Sato, F. Appl. Phys. Lett. 2003, 83, 569.
[153] (a) Holmes, R. J.; D’Andrade, B. W.; Forrest, S. R.; Ren, X.; Li, J.; Thompson, M. E. Appl. Phys. Lett. 2003, 83, 3818. (b) Ren, X.; Li, J.; Holmes, R. J.; Djurovich, P. I.; Forrest, S. R.; Thompson, M. E. Chem. Mater. 2004, 16, 4743.
[154] Li, J.; Djurovich, P. I.; Alleyne, B. D.; Tsyba, I.; Ho, N. N.; Bau, R.; Thompson, M. E. Polyhedron 2004, 23, 419.
[155] Chen, F.-C.; He, G.; Yang, Y. Appl. Phys. Lett. 2003, 82, 1006.
[156] Sudhakar, M.; Djurovich, P. I.; Hogen-Esch, T. E.; Thompson, M. E. J. Am. Chem. Soc. 2003, 125, 7796.
[157] Gong, X.; Robinson, M. R.; Ostrowski, J. C.; Moses, D.; Bazan, G. C.; Heeger, A. J. Adv. Mater. 2001, 14, 581.
[158] Kanai, H.; Ichinosawa, S.; Sato, Y. Synth. Met. 1997, 91, 195.
[159] (a) Adamovich, V.; Brooks, J.; Tamayo, A.; Alexander, A. M.; Djurovich, P. I.; D’Andrade, B. W.; Adachi, C.; Forrest, S. R.; Thompson, M. E. J. Mater. Chem. 2002, 26, 1171. (b) Holmes, R. J.; Forrest, S. R.; Tung, Y.-J.; Kwong, R. C.; Brown, J. J.; Garon, S.; Thompson, M. E. Appl. Phys. Lett. 2003, 82, 2422.
[160] Lei, G. T.; Wang, L. D.; Duan, L.; Wang, J. H.; Qiu, Y. Synth. Met. 2004, 144, 249.
[161] Brunner, K.; Dijken, A. V.; Börner, H.; Bastiaansen, J. J. A. M.; Kiggen, N. M. M.; Langeveld, B. M. W. J. Am. Chem. Soc. 2004, 126, 6035.
[162] Adachi, C.; Baldo, M. A.; Forrest, S. R.; Thompson, M. E. Appl. Phys. Lett. 2000, 77, 904.
[163] Kolosov, D.; Adamovich, V.; Djurovich, P.; Thompson, M. E.; Adachi, C. J. Am. Chem. Soc. 2002, 124, 9945.
[164] Inomata, H.; Goushi, K.; Masuko, T.; Konno, T.; Imai, T.; Sasabe, H.; Brown, J. J.; Adachi, C. Chem. Mater. 2004, 16, 1285.

[165] Tsuji, T.; Kawami, S.; Miyaguchi, S.; Naijo, T.; Yuki, T.; Matsuo, S.; Miyazaki, H. 2004 Society for Information Display (SID’04), 2004, 900, Seattle USA.
[166] Yeh, S. J.; Wu, W. C.; Chen, C. T.; Song, Y. H.; Chi, Y.; Ho, M. H.; Hsu, S. F.; Chen, C. H. Adv. Mater. 2005, 17, 285.
[167] Bhongale, C. J.; Hsu, C. S. Angew. Chem. Int. Ed. 2006, 45, 1404.
[168] (a) Cleave, V.; Yahioglu, G.; Le Barny, P.; Friend, R. H.; Tessler, N. Adv. Mater. 1999, 11, 285. (b) Chen, F. C.; Yang, Y.; Thompson, M. E.; Kido, J. Appl. Phys. Lett. 2002, 80, 2308. (c) Vaeth, K. M.; Tang, C. W. J. Appl. Phys. 2002, 92, 3447. (d) Kawamura, Y.; Yanagida, S.; Forrest, S. R. J. Appl. Phys. 2002, 92, 87. (e) Gong, X.; Ma, W. L.; Ostrowski, J. C.; Bazan, G. C.; Moses, D.; Heeger, A. J. Adv. Mater. 2004, 16, 615.
[169] (a) Zhen, H.; Jiang, C.; Yang, W.; Jiang, J.; Huang, F.; Cao, Y. Chem. Eur. J. 2005, 11, 5007. (b) Jiang, J.; Jiang, C.; Yang, W.; Zhen, H.; Huang, F.; Cao, Y. Macromolecules 2005, 38, 4072. (c) Mak, C. S. M.; Hayer, A.; Pascu, S. I.; Watkins, S. E.; Holmes, A. B.; Kchler, A.; Friend, R. H. Chem. Commun. 2005, 4708. (d) Liu, Z.; Guan, M.; Bian, Z.; Nie, D.; Gong, Z.; Li, Z.; Huang, C. Adv. Funct. Mater. 2006, 16, 1441. (e) Bettington, S.; Tavasli, M.; Bryce, M. R.; Beeby, A.; Al-Attar, H.; Monkman, A. P. Chem. Eur. J. 2006, Early View. (f) Namdas, E. B.; Ruseckas, A.; Samuel, I. D. W.; Lo, S.-C.; Burn, P. L. Appl. Phys. Lett. 2005, 86, 091104.
[170] (a) Lo, S. C.; Male, N. A. H.; Markham, J. P. J.; Magennis, S. W.; Burn, P. L.; Salata, O. V.; Samuel, I. D. W. Adv. Mater. 2002, 14, 975. (b) Markham, J. P. J.; Lo, S. C.; Magennis, S. W.; Burn, P. L.; Samuel, I. D. W. Appl. Phys. Lett. 2002, 80, 2645. (c) Anthopoulos, T. D.; Frampton, M. J.; Namdas, E. B.; Burn, P. L.; Samuel, I. D. W. Adv. Mater. 2004, 16, 557. (d) Lo, S. C.; Richards, G. J.; Markham, J. P. J.; Namdas, E. B.; Sharma, S.; Burn, P. L.; Samuel, I. D. W. Adv. Funct. Mater. 2005, 15, 1451. (e) Neil, C.; Bera, R. N.; Burn, P. L.; Samuel, I. D. W. Macromolecules 2005, 38, 9564.
[171] Laskar, I. R.; Hsu, S. F.; Chen, T. M. Polyhedron 2005, 24, 189.
[172] (a) An, B. K.; Kwon, S. K.; Jung, S. D.; Park, S. Y. J. Am. Chem. Soc. 2001, 124, 14410. (b) Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Chem. Commun. 2001, 1740.
[173] (a) Peng, K. Y.; Chen, S. A.; Fann, W. S.; Chen, S. H.; Su, A. C. J. Phys. Chem. B 2005, 109, 9368. (b) Innocenzi, P.; Brusatin, G. Chem. Mater. 2001, 13, 3126.
[174] Lamansky, S.; Djurovich, P. I.; Razzaq, F. A.; Garon, S.; Murphy, D. L.; Thompson, M. E. J. Appl. Phys. 2002, 92, 1570.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top