跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/03 04:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊婉甄
研究生(外文):Woan-Jen Yang
論文名稱:白光發光二極體用單相螢光材料之設計、製備與發光特性鑑定
論文名稱(外文):Design, Synthesis and Luminescence Characterizations of Single-Composition Phosphors for White Light-Emitting Diodes
指導教授:陳登銘陳登銘引用關係
指導教授(外文):Teng-Ming Chen
學位類別:博士
校院名稱:國立交通大學
系所名稱:應用化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:100
中文關鍵詞:白光發光二極體單相螢光材料能量轉移
外文關鍵詞:white light-emitting diodessingle-composition phosphorenergy transfer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:280
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文研究提供開發新穎白光發光二極體用單相螢光材料之設計,並製備以氧化物和硫化物為主體之螢光材料,加以驗證我們所提出的設計原理,並且藉由螢光材料之發光特性與其活化中心間之能量轉移,研發出適用於紫外光或藍光發光二極體轉換白光的單相螢光材料。
第一章簡介目前白光發光二極體的研究背景及現況,以此為主軸提出進行本論文研究之動機與目的,並針對文獻中敏化劑與活化劑共摻雜於單一主體的發光特性與能量轉移現象進行探討,並擬出研發新穎白光發光二極體用單相螢光材料之設計原理。
第二章詳述A螢光材料之高溫(1400℃)還原氣氛固態製程。Eu2+和Mn2+離子分別摻雜於A中的發光分別為藍光和黃光,由於Eu2+的發光光譜與Mn2+的激發光譜具有明顯的重疊,因此可推論Eu2+和Mn2+之間呈現共振能量轉移的現象,且此能量轉移的過程為共振形態的電偶極-四極交互作用。利用Eu2+→Mn2+能量轉移的原理及適當地調整Eu2+和Mn2+之間的相互比例,A螢光材料可以在紫外光的激發下產生白光。
第三章詳述B螢光材料之高溫(900-1000℃)還原氣氛固態製程。其在紫外光的激發下呈現二處放射譜帶:一是位於416 nm,源自於佔據Sr2+格位Eu2+離子的發光;另一則是不對稱的譜帶,經由峰值分析獲得二個分別位於538和613 nm的放射峰,此為取代二種結晶學相異Zn2+格位的Mn2+離子的發光。Eu2+和Mn2+之間的能量轉移機制則為共振型態的電偶極-四極交互作用。同樣地,藉由Eu2+→Mn2+能量轉移的原理及適當地調整Eu2+和Mn2+之間的相互比例,B螢光材料可以在紫外光的激發下產生白光。
第四章詳述C螢光材料之高溫(900-1000℃)硫化氫氣氛固態製程。C主體為一半導體,其能隙約為3.3 eV。C在藍光的激發下,呈現二處放射譜帶:一是位於498 nm,其源自於Ce3+離子之發光;另一則是位於655 nm,起源於主體晶格及Eu2+離子之發光。Ce3+和Eu2+之間的能量轉移現象可由Ce3+的發光光譜與Eu2+的激發光譜相互明顯重疊得知,且此能量轉移機制為共振型態的電偶極-偶極交互作用。藉由適當地調整Ce3+和Eu2+之間的相互比例,C螢光材料可以在藍光光源的轉換下與藍光混合產生白光。
第五章詳述D螢光材料之高溫(900-1000℃)硫化氫氣氛固態製程。D主體為一半導體,其能隙約為3.3 eV。D在紫外光的激發下,呈現二處放射譜帶:一是位於475 nm,其源自於Eu2+離子之發光;另一則是位於653 nm,源自於主體晶格及Mn2+離子之發光。由Eu2+的發光光譜與Mn2+的激發光譜呈現明顯的重疊,因此可以推論Eu2+和Mn2+之間有共振能量轉移的現象,且此為短距交換型態的能量轉移過程。藉由Eu2+→Mn2+能量轉移的原理及適當地調整Eu2+和Mn2+之間的相互比例,D螢光材料可以在紫外光的激發下產生冷白光。
第六章詳述E多相螢光材料之高溫(900℃)固態製程。其發光主要來自於E中之VO43-根和E中之Eu3+離子。VO43-根和Eu3+離子之間可以藉由輻射光子交換來進行能量轉移。因此,E多相螢光材料可以在此紫外光之激發下產生暖白光。
第七章歸納本論文所研究及開發出的四種白光發光二極體用單相螢光材料A、B、C和D和一種多相螢光材料E之發光性質及能量轉移機制。並以前四種單相螢光材料為基礎,驗證單相螢光材料應用於紫外光及藍光發光二極體以產生白光之設計原理與規則。
Chinese Abstract ..................................I
English Abstract ..................................IV
Acknowledgment ..................................VII
Contents ...........................................VIII

Chapter 1 Introduction………………………………………… 1
1.1 Research Background………………………………... 2
1.2 Motivations…………………………………………... 4
1.3 Theory on Electronic Transition and Luminescence… 6
1.4 Literature Review……………………………………. 15
1.5 Principle of Single-Composition Phosphor Design…. 17
1.6 Summary of the Thesis………………………………. 22

Chapter 2 White Light Generation in A Phosphor for Ultraviolet Light-Emitting Diodes…. 23
2.1 Introduction………………………………………….. 24
2.2 Experimental…………………………………………. 25
2.3 Results and Discussion………………………………. 26
2.4 Conclusions………………………………………….. 36

Chapter 3 White Light Generation in B Phosphor for Ultraviolet Light-Emitting Diodes…. 38
3.1 Introduction………………………………………….. 39
3.2 Experimental…………………………………………. 39
3.3 Results and Discussion………………………………. 41
3.4 Conclusions………………………………………….. 50

Chapter 4 White Light Generation in C Phosphor for Blue Light-Emitting Diodes………..52
4.1 Introduction………………………………………….. 53
4.2 Experimental…………………………………………. 54
4.3 Results and Discussion………………………………. 55
4.4 Conclusions………………………………………….. 67

Chapter 5 Cold White Light Generation in D Phosphor for Ultraviolet Light-Emitting Diodes……………………………68
5.1 Introduction………………………………………….. 69
5.2 Experimental…………………………………………. 70
5.3 Results and Discussion………………………………. 71
5.4 Conclusions………………………………………….. 81

Chapter 6 Warm White Light Generation In E for Ultraviolet Light-Emitting Diodes............................ 83
6.1 Introduction………………………………………….. 84
6.2 Experimental…………………………………………. 84
6.3 Results and Discussion………………………………. 86
6.4 Conclusions………………………………………….. 93

Chapter 7 Summary and Conclusions…………………94
Publications and Patents………………………………………99
Curriculum Vitae………………………………………………100
Chapter 1
[1] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, Japan Patent 10-56208 (1998).
[2] G. Bogner, I. G. Botty, B. Braune, H. T. Hintzen, J. W. H. van Krevel, and G. Waitl, United States Patent 6,649,946 (2003).
[3] M. Hideki, K. Koji, and S. Akihiko, Japan Patent 19990132924 (1999).
[4] R. C. Ropp, Luminescence and the Solid State, Elsevier Science Publisher, The Netherlands (1999).
[5] G. Blasse, and B. C. Grabmaier, Luminescent Materials, Springer-Verlag, Berlin, Germany (1994).
[6] B. E. Douglas, D. H. McDaniel, and J. J. Alexander, Concepts and Models of Inorganic Chemistry-Third Edition, John Wiley & Sons, New York (1994).
[7] B. D. Bartolo, Optical Interactions in Solids, John Wiley & Sons, New York (1968).
[8] D. L. Dexter, J. Chem. Phys. 21, 836 (1953).
[9] G. Blass, Philips Res. Repts 24, 131 (1969).
[10] J. C. De Mello, H. F. Wittmann, and R. H. Friend, Adv. Mater. 9, 230 (1997).
[11] T. L. Barry, J. Electrochem. Soc. 117, 381 (1970).
[12] J. O. Rubio, H. S. Murrieta, R. C. Powell, and W. A. Sibley, Phys. Rev. B 31, 59 (1985).
[13] J. O. Rubio, and F. A. Munoz, Phys. Rev. B 36, 8115 (1987).
[14] J. O. Rubio, Phys. Rev. B 39, 1962 (1989).
[15] E. Camarillo, and J. O. Rubio, J. Phys.: Condens. Matter 1, 4873 (1989).
[16] U. G. Caldino, A. F. Munoz, and J. O. Rubio, J. Phys.: Condens. Matter, 2, 6071 (1990).
[17] U. G. Caldino, A. F. Munoz, and J. O. Rubio, J. Phys.: Condens. Matter 5, 2195 (1993).
[18] A. Mendez, F. L. Ramos, H. Riveros, E. Camarillo, and U. G. Caldino, J. Mater. Sci. Lett. 18, 399 (1999).
[19] H. Lin, and X. Liu, Chinese J. Lumin. 17, 121 (1996).
[20] Y. Tan, and C. Shi, J. Phys. Chem. Solids 60, 1805 (1999).
[21] H. Najafov, A, Kato, H. Toyota, K. Iwai, A. Bayramov, and S. Iida, Jpn. J. Appl. Phys. 41, 1424 (2002).
[22] H. Lin, X. R. Liu, and E. Y. B. Pun, Opt. Mater. 18, 397 (2002).
[23] U. G. Caldino, J. Phys.: Cndens. Matter 15, 7127 (2003).
[24] A. A. Setlur, A. M. Srivastava, H. A. Comanzo, and D. D. Doxsee, United States Patent 6,685,852 (2004).
[25] J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, Appl. Phys. Lett. 84, 2931 (2004).
[26] J. S. Kim, P. E. Jeon, Y. H. Park, J. C. Choi, H. L. Kim, G. C. Kim, and T. W. Kim, Appl. Phys. Lett. 85, 3696 (2004).
[27] R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr. Theor. Gen. Crystallogr. A32, 751 (1976).
[28] M. V. Hoffman, J. Electrochem. Soc.: Solid State Sci. 115, 560 (1968).
[29] L. Jiang, C. Chang, and D. Mao, J. Alloys Compounds 360, 193 (2003).
[30] G. Q. Yao, J. H. Lin, L. Zhang, G. X. Lu, M. L. Gong, and M. Z. Su, J. Mater. Chem. 8, 585 (1998).
[31] S. H. M. Poort, H. M. Reijnhoudt, H. O. T. van der Kuip, and G. Blasse, J. Alloys Compounds 241, 75 (1996).
[32] Y. Lin, Z. Zhang, Z. Tang, X. Wang, J. Zhang, and Z. Zheng, J. Euro. Ceramic Soc. 21, 683 (2001).
[33] N. Lakshminarasimhan, and U. V. Varadaraju, J. Electrochem. Soc. 152, H152 (2005).
[34] N. Kodama, M. Yamaga, and B. Henderson, J. Appl. Phys. 84, 5820 (1998).

Chapter 2
[1] T. L. Barry, J. Electrochem. Soc. 117, 381 (1970).
[2] J. O. Rubio, H. S. Murrieta, R. C. Powell, and W. A. Sibley, Phys. Rev. B 31, 59 (1985).
[3] J. O. Rubio, and F. A. Munoz, Phys. Rev. B 36, 8115 (1987).
[4] J. O. Rubio, Phys. Rev. B 39, 1962 (1989).
[5] E. Camarillo, and J. O. Rubio, J. Phys.: Condens. Matter 1, 4873 (1989).
[6] U. G. Caldino, A. F. Munoz, and J. O. Rubio, J. Phys.: Condens. Matter, 2, 6071 (1990).
[7] U. G. Caldino, A. F. Munoz, and J. O. Rubio, J. Phys.: Condens. Matter 5, 2195 (1993).
[8] A. Mendez, F. L. Ramos, H. Riveros, E. Camarillo, and U. G. Caldino, J. Mater. Sci. Lett. 18, 399 (1999).
[9] H. Lin, and X. Liu, Chinese J. Lumin. 17, 121 (1996).
[10] A. A. Setlur, A. M. Srivastava, H. A. Comanzo, and D. D. Doxsee, United States Patent 6,685,852 (2004).
[11] J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, Appl. Phys. Lett. 84, 2931 (2004).
[12] J. S. Kim, P. E. Jeon, Y. H. Park, J. C. Choi, H. L. Kim, G. C. Kim, and T. W. Kim, Appl. Phys. Lett. 85, 3696 (2004).
[13] R. J. Angel, Am. Mineral. 73, 1114 (1988).
[14] R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr. Theor. Gen. Crystallogr. A32, 751 (1976).
[15] N. Ruelle, M. Pham-Thi, and C. Fouassier, Jpn. J. Appl. Phys. 31, 2786 (1992).
[16] P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, J. Phys. Chem. Solids 64, 841 (2003).
[17] D. L. Dexter, J. Chem. Phys. 21, 836 (1953).
[18] G. Blass, Philips Res. Repts 24, 131 (1969).

Chapter 3
[1] A. A. Setlur, A. M. Srivastava, H. A. Comanzo, and D. D. Doxsee, United States Patent 6,685,852 (2004).
[2] J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, Appl. Phys. Lett. 84, 2931 (2004).
[3] J. S. Kim, P. E. Jeon, Y. H. Park, J. C. Choi, H. L. Kim, G. C. Kim, and T. W. Kim, Appl. Phys. Lett. 85, 3696 (2004).
[4] A. Hemon and G. Courbion, J. Soild State Chem. 85, 164 (1990).
[5] R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr. Theor. Gen. Crystallogr. A32, 751 (1976).
[6] P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, J. Phys. Chem. Solids 64, 841 (2003).
[7] D. L. Dexter, J. Chem. Phys. 21, 836 (1953).
[8] G. Blass, Philips Res. Repts 24, 131 (1969).

Chapter 4
[1] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, Japan Patent 10-56208 (1998).
[2] R.-J. Xie, N. Hirosaki, M. Nitomo, Y. Yamamoto, T. Suehiro, and K. Sakuma, J. Phys. Chem. B. 108, 12027 (2004).
[3] T. Suehiro, N. Hirosaki, R.-J. Xie, and M. Mitimo, Chem. Mater. 17, 308 (2005).
[4] X. Piao, T. Horikawa, H. Hanzawa, and K.-I. Machida, Chem. Lett. 35, 334 (2006).
[5] X. Piao, T. Horikawa, H. Hanzawa, and K.-I. Machida, Appl. Phys. Lett. 88, 161908 (2006).
[6] Y. Q. Li, J. E. J. Van Steen, J. W. H. Van Krevel, G. Botty, A. C. A. Delsing, F. J. DiSalvo, G. de With, H. T. Hintzen, J. Alloy Comp. 417, 273 (2006).
[7] G. Blasse, and B. C. Grabmaier, Luminescent Materials, Springer-Verlag, Berlin, Germany (1994).
[8] Y. Tan, and C. Shi, J. Phys. Chem. Solids 60, 1805 (1999).
[9] H. Najafov, A, Kato, H. Toyota, K. Iwai, A. Bayramov, and S. Iida, Jpn. J. Appl. Phys. 41, 1424 (2002).
[10] H. Lin, X. R. Liu, and E. Y. B. Pun, Opt. Mater. 18, 397 (2002).
[11] U. G. Caldino, J. Phys.: Cndens. Matter 15, 7127 (2003).
[12] H. G. Schnerung, and R. Hoppe, Z. Anorg. Allg. Chem. 312, 99 (1961).
[13] R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr. Theor. Gen. Crystallogr. A32, 751 (1976).
[14] G. Blasse, and B. C. Grabmaier, Luminescent Materials, Springer-Verlag, Berlin, Germany (1994).
[15] P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, J. Phys. Chem. Solids 64, 841 (2003).
[16] D. L. Dexter, J. Chem. Phys. 21, 836 (1953).
[17] G. Blass, Philips Res. Repts 24, 131 (1969).

Chapter 5
[1] A. A. Setlur, A. M. Srivastava, H. A. Comanzo, and D. D. Doxsee, United States Patent 6,685,852 (2004).
[2] J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, Appl. Phys. Lett. 84, 2931 (2004).
[3] J. S. Kim, P. E. Jeon, Y. H. Park, J. C. Choi, H. L. Kim, G. C. Kim, and T. W. Kim, Appl. Phys. Lett. 85, 3696 (2004).
[4] U. G. Caldino, A. F. Munoz, and J. O. Rubio, J. Phys.: Condens. Matter, 2, 6071 (1990).
[5] U. G. Caldino, A. F. Munoz, and J. O. Rubio, J. Phys.: Condens. Matter 5, 2195 (1993).
[6] A. Mendez, F. L. Ramos, H. Riveros, E. Camarillo, and U. G. Caldino, J. Mater. Sci. Lett. 18, 399 (1999).
[7] U. D. Altermatt, and I. D. Brown, Acta Cryst. A34, 125 (1987).
[8] B. Eisenmann, M. Jakowski, and H. Schafer, Rev. Chim. Miner. 20, 329 (1983).
[9] R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr. Theor. Gen. Crystallogr. A32, 751 (1976).
[10] G. Blasse, and B. C. Grabmaier, Luminescent Materials, Springer-Verlag, Berlin, Germany (1994).
[11] P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, J. Phys. Chem. Solids 64, 841 (2003).
[12] D. L. Dexter, J. Chem. Phys. 21, 836 (1953).
[13] G. Blass, Philips Res. Repts 24, 131 (1969).

Chapter 6
[1] G. Blasse and A. Bril, J. Electrochem. Soc. 114, 250 (1967).
[2] B. Blanzat, Mat. Res. Bull. 9, 1647 (1974).
[3] A. M. Srivastava, A. R. Duggal, H. A. Comanzo, and W. W. Beers, United States Patent 6,853,131 (2005).
[4] A. A. Selter, H. A. Comanzo, A. M. Srivastava, and W. W. Beers, J. Electrochem. Soc. 152, H205 (2005).
[5] D. Krol, H. Ronde, and G. Blasse, J. Solid State Chem. 19, 143 (1976).
[6] H. Ronde and J. G. Snijders, Chem. Phys. Lett. 50, 282 (1977).
[7] H. Ronde and G. Blasse, J. Inorg. Nucl. Chem. 40, 215 (1978).
[8] G. Blasse, and B. C. Grabmaier, Luminescent Materials, Springer-Verlag, Berlin, Germany (1994).
[9] R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr. Theor. Gen. Crystallogr. A32, 751 (1976).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top