跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/09 23:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉琪婷
研究生(外文):Chi-Ting Liu
論文名稱:利用連續式電透析處理含有二甲基亞楓的廢水並評估其回用可能性
論文名稱(外文):Continuous Electrodeionization Treatment of Dimethyl Sulfoxide Contaminated Wastewater
指導教授:林志高林志高引用關係
指導教授(外文):Jih-Gaw Lin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:47
中文關鍵詞:連續式電透析裝置outgassingATD-GC/MS二甲基亞楓
外文關鍵詞:ATD-GC/MSCEDIDMSOoutgassing
相關次數:
  • 被引用被引用:2
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著光電產業及半導體產業的發達,製程規格品質要求日趨嚴苛,因此製程中所使用的超純水量也相對增加並且品質要求亦提高。有鑒於台灣水資源缺乏且配合政府回收水比例要求,園區內紛紛設置污水處理廠來進行廢水回收及再使用。一般園區採用匯流方式將廢水集中,以混凝或其他高級處理等方式進行廢水品質的改善,然而,廢水中含有各種有機及無機物質且此種方式並無法使水質規格有效達到超純水等級,因此也無法代替超純水使用於製程中。倘若能在製程機台後端加裝較小規模的處理設備並針對特定的污染物設計處理,那麼不僅處理效率提升也能較易達到超純水的品質要求。因此,本研究在於評估一套針對光電及半導體場中常見之有機物,二甲基亞楓 (dimethyl sulfoxide, DMSO),所設計的水處理設備其處理效率。此外,將處理水進行回用基板清洗的步驟,並發展一包括採樣及分析的技術,以了解回用水對於玻璃基板清洗是否有殘留或影響

Continuous Electrodeionization (CEDI) 常被使用於超純水的製造,特別是在光電及半導體產業。CEDI 因結合離子交換樹脂混床與電透析使其處理效率要比一般傳統混床或電透析效率要高。本研究藉由改變電流 (I) 與產水比例 (Q) 進行評估 CEDI 處理二甲基亞楓廢水效率,並由量測進流水與出流水的 TOC 值來說明成果。研究中發現,當處理水濃度較低時電流值的大小並不會對於處理效率有很大的影響,而另一方面產水百分比則會大幅使處理效率變化,當比例為 70% 時,效率最佳可達去除率 90% 以上。
分析方式以自動熱脫附儀 (Auto Thermal Desorption, ATD) 搭配氣相層析儀 (Gas Chromatography, GC) 與質量偵檢器 (Mass Spectrum Detector, MSD) 分析氣相中與液相中的二甲基亞楓。此法將 DMSO 收集於填有Tenax TA的吸附管中,接著將吸附管加熱使 DMSO 脫附並進行分析,此法可有效的分析 DMSO,其偵測極限可達 1 ng。另一方面,以 outgassing 進行樣品採樣,在一密閉系統中,加熱玻璃基板使因高溫而從玻璃基板脫附出的污染物收集在吸附管中,接著以 ATD-GC/MS 進行污染物分析。其中,溫度及載流氣體流量為主要影響收集效率的因子,適用於本研究所主要分析的對象 DMSO 的最佳操作條件分別為: 120˚C 及 300 ml/min。
As the product specifications of the photoelectric and semiconductor industries are tightening constantly and the ultra pure water consumption is also increasing proportionately. Due to limitedwater resource and in compliance with the new environmental protection policy in Taiwan, it is mandatory for the industry to set up an onsite wastewater treatment system and implement water reuse program. To achieve this goal, most of the factories adopt flocculation/coagulation or other advanced treatment technologies. However, it is ineffective to remove all organic matters from the wastewater. In view of this, the present research is focused on treating dimethyl sulfoxide (DMSO) contaminated wastewater with an innovative treatment train consisting of UV and RO pretreatments followed by a continuous electrodeionization unit. In addition, the research is focused to establish an analytical method for confirming the quality of the reused DMSO wastewater.

Electrodeionization (EDI) has been commonly applied to produce ultra pure water, especially in the semiconductor industry. The continuous electrical regeneration of an internal equipped ion-exchange mixed bed is the main advantage of this emerging technology. EDI couples two well known effects: electrodialysis and ion exchange. The present research studies EDI process efficiency with a series of applied current I and the permeate percentage Q variations. The results show that current has no significant effect on treated water with low inlet COD concentrations, but permeate percentage at 70% offers the optimum removal efficiency. As a whole, the treatment method studied is very effective for a removal of DMSO from the TFT-LCD manufacturing wastewater.

ATD-GC/MS method for measuring gas and liquid DMSO samples was evaluated. The method involved adsorption using Tenax TA adsorbent tube , followed by thermal desorption and gas chromatography-mass spectrometry analysis. The method was effective in the measurement of DMSO and its detection limit is 1 ng. At temperature above XX oC, the efficiency of DMSO collection from the glass base plate was reduced. In a closed system, the temperature of the outgassing chamber and carrier gas flow rate influenced the DMSO collection efficiency. The optimum temperature and gas flow rate for DMSO were 120˚C and 300 ml/min, respectively.
Index
摘要 I
Abstract III
誌謝 V
Index VI
Table List VIII
Figure List IX

1. Introduction 1
1.1 Measurement of DMSO 1
1.2 Water Treatment Technology 3
1.2.1 Ultraviolet (UV) 3
1.2.2 Reverse Osmosis (RO) 3
1.2.3 Continuous Electrodeionization (CEDI) 4
1.3 Outgassing Method 7
1.4 Scope and Objectives 8
2. Materials and Methods 9
2.1 Chemicals 9
2.2.1 Characteristics of DMSO 9
2.2.2 Characteristics of DMSO-d6 10
2.2 Adsorption Traps 11
2.3 Sampling Details 12
2.4 Analytical Method 12
2.5 Water Treatment 13
3. Results and Discussion 15
3.1 Establish DMSO Analysis Method 15
3.1.1 Gas Chromatography Oven Temperature Program 15
3.1.2 Optimization of Auto Thermal Desorption Operation Conditions 17
3.1.3 Calibration of Sampling Methodology 20
3.2 Optimum CEDI Operation 22
3.2.1 Influence of the Applied Current I 23
3.2.2 Influence of the Permeate Quantity Q 27
3.3 Outgassing Method 30
3.3.1 Optimum Sampling Flow Rate 30
3.3.2 Optimum Outgassing Oven Temperature 35
3.3.3 Outgassing Calibration Curve 39
3.4 Real sample 40
4. Conclusions 45
5. References 46
5. References
Berresheim, H., Tanner, D. J. and Eiselet, F. L. (1993) Real-time measurement of dimethyl sulfoxide in ambient air. Analytical Chemistry 65(1), 84-86.
Bouhidel, K., Lakehal, A. (2006) Influence of voltage and flow rate on electrodeionization (EDI) process efficiency. Desalination 193(3), 411–421.
Chou, M. S. and Chang, K. L. (2005) Study of UV, O3 and UV/O3 oxidation of aqueous dimethyl sulfoxide (DMSO). The 30th of Wastewater Treated Technology Conference.
Claes, M., Gendt, S. De., Kenens, C., Conard, T., Bender, H., Storm, W., Bauer, T., Mertens, P. and Heyns, M. M. (2001) Controlled deposition of organic contamination and removal with ozone-based cleanings. Journal of The Electrochemical Society 148(3), 118-125.
De Mora, S. J., Lee, P., Shooter, D. and Eschenbruch, R. (1993) The Analysis and importance of dimethyl sulfoxide in wine. American Journal of Enology and Viticulture 44(3), 327-332.
Den, W., Bai, H. L., and Kang, Y. H. (2006) Organic airborne molecular contamination in semiconductor fabrication clean rooms. Journal of The Electrochemical Society 153(2), 149-159.
Dimascio, F., Wood, J. and Fenton, J. M. (1998) Continuous electrodeionization production of high-purity water without regeneration chemicals. The Electrochemical Society Interface 6(3), 26-29.
Ishiwari, S., Kato, H., and Habuka, H. (2001) Development of evaluation method for organic contamination on silicon wafer surfaces. Journal of The Electrochemical Society 148(11), 644-648.
International technology roadmap for semiconductors 2004 updates.
Kang, Y., Den, W., Bai, H. and Ko, F. (2005) Direct quantitative analysis of phthalate esters as micro-contaminants in cleanroom air and wafer surfaces by auto-thermal desorption–gas chromatography–mass spectrometry. Journal of Chromatography A 1070(1), 137-145.
Koito T., Tekawa, M. and Toyoda, A. (1998) A novel treatment technique for DMSO wastewater. IEEE Transactions on Semiconductor Manufacturing 11(1), 3-8.
Ketola, R. A., Mansikka, T., Ojala, M., Kotiaho, T. and Kostiainen, R. (1997) Analysis of volatile organic sulfur in compound in air by membrane inlet mass spectrometry. Analytical Chemistry 69(22), 4536-4539.
Kunz, R. R. and Downs, D. K. (1999) Outgassing of organic vapors from 193 nm photoresists: Impact on atmospheric purity near the lens optics. The Journal of Vacuum Science and Technology B 17(6), 3330-3334.
Kumar, A., Camenzind, M. J. and Chargin Jr, C. J. (2000) Identifying organic contaminants in ultra pure water at sub-parts-per-billion levels. Ultrapure Fluids, Sunnyvale, CA: Balazs Analytical Laboratory.
Lang, C., Brown, J. Russell, F. (1991) Determination of dimethyl sulfoxide and dimethyl dulfone in Air. Analytical Chemistry 63(2), 186-189.
Lee Y., Lee, C. and Yoon, J. (2004) Kinetics and mechanisms of DMSO (dimethysulfoxide) degradation by UV/H2O2 process. Water Research 38(10), 2579-2588.
Liang, L. (2003) Evolution in Design of CEDI Systems. Ultrapure Water 20(8), 13-18.
Mora, J., Lee, P., Shooter, D. and Eschenbruch, R. (1993) The analysis and importance of dimethylsulfoxide in wine. American Journal of Enology and Viticulture 44(3), 327-332.
Park, S. J., Yooon, T. I., Bae, J. H. and Seo, H. J. (2001) Biological treatment of wastewater containing dimethyl sulphoxide from the semiconductor industry. Process Biochemistry 36(6), 579-589.
Saito, M., Anbai, K. and Hayashi, T. (2005) Organic outgassing behavior of plastic material and reduction of organic contamination in semiconductor equipment. IEEE Transactions on semiconductor manufacturing 18(4), 575-583.
Scobbie, E. and Groves, J. A. (1998) Determination of dimethyl sulphate and diethyl sulphate in air by thermal desorption gas chromatography-mass spectrometry. Annals of Occupational Hygiene 42(3), 201-207.
Semmens, M. J., Dillon, C. D. and Riley, C. (2001) An evaluation of continuous electrodeionization as an in-line process for plating rinsewater recovery. Environmental Progress 20(4), 251-260.
Simo, R., Grimalt, J. O. and Albaige, J. (1996) Sequential method for the field determination of nanomolar concentrations of dimethyl sulfoxide in natural waters. Analyical Chemistry 68(9), 1493-1498.
Simo, R. (1998) Trace chromatographic analysis of dimethyl sulfoxide and related methylated sulfur compounds in natural waters. Journal of Chromatography A 807(2), 151-164.
Smith, Geoff C., Clark, T., Knutsen, L. and Barrett, E. (1999) Methodology for analyzing dimethyl sulfide and dimethyl sulfoniopropionate in seawater using deuterated internal standards. Analytical Chemistry 71(24), 5563-5568.
Takahagi, T., Shingubara, S., Sakaue, H., Hoshino, K. and Yashima, H. (1996) Study on adsorption behavior of organic contaminations on silicon surface by gas chromatography/mass spectrometry. Japanese Journal of Applied Physics 35(7), 818-821.
Tsuruta, Y., Ito, Y., Harada, K., Narita, Y., Ohbayashi, T., Azekura, H., Fukagawa, M., Narita, M. and Maeda, K. (2001) Measurements of blood DMSO and DMSO2 in a healthy person and a hemodialysis patient. Clinical and Experimental Nephrology 5(3), 158-162.
Ui, K., Abo, M., Okubo, A. and Yamazaki, S. (2004) An improved method for the analysis of dimethyl sulfoxide in water samples. Analytical Sciences 20(11), 223-225.
Veillerot, M., Danel, A., Cetre, S. and Tardif, F. (2003) Deposition kinetic of airborne organic contamination on wafers measured by TD-GC/MS. Materials Science and Engineering 102(1), 385-389.
Wang, J., Wang, S. and Jin, M. (2000) A study of the electrodeionization process high-purity water production with a RO/EDI system. Desalination 132(3), 349-352.
Wood, J. and Gifford, J. (2004) Process nad system design for reliable operation of RO/CEDI systems. International Water Conference, October 2004.
Yeon, K., Song, J. and Moon, S. (2004) A study on stack configuration of continuous electrodeionization for removal of heavy metal ions from the primary coolant of a nuclear power plant. Water Research 38(7), 1911–1921.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top