跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/08 13:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林其德
研究生(外文):Chi-De Lin
論文名稱:以影像處理估測交通流量及其應用於獨立路口的模糊適應性交通號誌管理之研究
論文名稱(外文):Estimating Traffic Flow By Image Processing and its Appliction to Fuzzy Adaptive Traffic Signal Control at an Isolated Intersection
指導教授:林昇甫林昇甫引用關係
指導教授(外文):Sheng-Fuu Lin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機與控制工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:117
中文關鍵詞:交通流量車流行人適應性交通號誌管理模糊推論系統影像處理
外文關鍵詞:traffic flowvehicular flowpedestrianadaptive traffic signal controlfuzzy inference systemimage processing
相關次數:
  • 被引用被引用:3
  • 點閱點閱:507
  • 評分評分:
  • 下載下載:125
  • 收藏至我的研究室書目清單書目收藏:0
交通資訊偵測以及適應性交通號誌管理,是現今智慧型交通系統(intelligent transportation system, ITS)的發展重心。將偵測到的交通資訊應用在獨立路口的適應性交通號誌管理上,可以動態地依照當時的交通狀況調整時相長度,減少該路口擁塞的情況發生。目前使用影像處理技術來偵測交通流量的研究相當受歡迎,但它們對交通資訊的偵測大都使用微觀尺度的量測,這對交通號誌管理的應用其實是不必要的;另外在適應性交通號誌管理的方面,由於具有動態變動的週期長度,所以在設計時常常不會考慮到最佳週期而使得週期過長。有鑑於此,本論文的主要目的是發展一套有效率的交通流量估測系統與具有適當週期長度的適應性號誌系統。
本論文的主要貢獻有三,第一,利用透視轉換(perspective transformation)得到前景像素總數與前景物件數目之間的關係,搭配預先建立好的橢圓行人樣版,可以大約地估測出行人穿越道上的人數。第二,利用前述的方法並配合影像紋理分析(texture analysis),可以將道路或是特定車道上的車流程度以[0, 1]之間的數表示。第三,提出一個以模糊推論系統(fuzzy inference system, FIS)為核心的模糊適應性交通號誌管理系統,並將最佳週期以及相對路口飽和度考慮於系統的設計當中。實驗顯示本論文所提出的影像處理演算法及模糊適應性號誌管理系統在不同的實驗場景之下皆有不錯的效果。
Traffic information detection and adaptive traffic signal control are vital to the development of intelligent transportation system. The cycle length of a traffic signal controller can be adjusted dynamically by applying gathered traffic information to adaptive traffic signal control at the isolated intersection, thus the traffic jams can be reduced. Detecting traffic information by use of image processing has become a trend, however, most of the previous research use microscopic measurement, which is unnecessary in application to adaptive traffic signal control. For adaptive traffic signal control system, the topic of optimal cycle is rarely considered since it has various lengths in each cycle; therefore, a very phase could have an overlong phase time. In view of this, an efficient image processing algorithm is proposed to estimate traffic flow in this thesis. In addition, an adaptive traffic signal control system that takes optimal cycle into account is presented.
The contributions of this thesis may be summarized as follows. First, the relation of the number of foreground pixels and the number of foreground objects can be obtained by using perspective transformation. With the pre-constructed ellipse human template, the number of pedestrian on a crosswalk can be estimated approximately. Second, use the method mention above together with texture analysis of an image, the traffic flow can be normalized and represented by a number between 0 and 1. Third, a fuzzy adaptive traffic controller based on fuzzy inference system is proposed. The design of the system also takes optimal cycle and relative saturation degree of different roads into consideration. The image processing algorithm and fuzzy traffic signal controller have been tested in various situations; the system shows promise and the experiment results are satisfactory.
中文摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xiii

第一章 緒論 1-1
1.1 相關研究 1-1
1.1.1 交通資訊偵測 1-2
1.1.2 交通動線效率化 1-5
1.2 研究動機 1-6
1.3 論文架構 1-8

第二章 相關知識及理論 2-1
2.1 影像處理技術 2-1
2.1.1 成像幾何學 2-2
2.1.2 紋理分析 2-6
2.1.3 特徵選擇 2-9
2.1.4 形態學 2-11
2.2 模糊推論系統 2-13
2.2.1 模糊化機構 2-14
2.2.2 模糊規則庫 2-15
2.2.3 模糊推論引擎 2-16
2.2.4 去模糊化機構 2-16
2.3 交通系統概論 2-18
2.3.1 交通名詞與知識 2-18
2.3.2 韋伯斯特最佳週期定時號誌控制 2-22

第三章 交通資訊估測系統與模糊適應性交通號誌管理系統 3-1
3.1 系統概述 3-1
3.2 相機校正 3-3
3.3 行人估測系統 3-6
3.3.1 前景抽取 3-6
3.3.2 移除非人物件 3-6
3.3.3 估測行人數目 3-9
3.4 車流估測系統 3-12
3.4.1 影像前處理 3-12
3.4.2 特徵抽取 3-13
3.4.3 場景校正與模糊車流估測系統 3-17
3.5 模糊適應性交通號誌管理系統 3-19
3.5.1 適應性號誌管理策略 3-20
3.5.2 適應性號誌管理的模糊推論系統 3-22

第四章 實驗結果與分析 4-1
4.1 實驗機制 4-1
4.1.1 行人估測系統實驗機制 4-1
4.1.2 車流估測系統實驗機制 4-2
4.1.3 模糊適應性交通號誌管理系統實驗機制 4-2
4.2 實驗結果 4-9
4.3 實驗分析 4-35
4.3.1以影像估測交通流量的實驗分析 4-36
4.3.2模糊適應性交通號誌管理系統的實驗分析 4-37
第五章 結論 5-1
參考文獻 I
[1] F. Y. Wang, P. B. Mirchandani, and N. Zheng, “Advances and Trends in Research and Development of Intelligent Transportation Systems: An Introduction to the Special Issue,” IEEE Trans. on Intelligent Transportation Systems, vol. 5, no. 4, pp. 222-223, Dec. 2004.
[2] B. Maurin, O. Masoud, and N. P. Papanikolopoulos, “Tracking All Traffic: Computer Vision Algorithms for Monitoring Vehicles, Individuals, and Crowds,” IEEE Trans. on Robotics & Automation, vol. 12, no. 1, pp. 29-36, March 2005.
[3] L. Y. Deng, N. C. Tang, D. L. Lee, C. T. Wang, and M. C. Lu, “Vision Based Adaptive Traffic Signal Control System Development,” Int’l Conf. Advanced Information Networking and Applications, vol. 2, pp. 25-30, Taipei, Taiwan, 2005.
[4] J. E. Naranjo, C. Gonzalez, J. Reviejo, R. Garcia, and T. Pedro, “Adaptive Fuzzy Control for Inter-Vehicle Gap Keeping,” IEEE Trans. on Intelligent Transportation Systems, vol. 4, no.3, pp. 132-142, Sept. 2003.
[5] A. Escalera, J. M. Armingol, J. M. Pastor, and F. J. Rodriguez, “Visual Sign Information Extraction and Identification by Deformable Models for Intelligent Vehicles,” IEEE Trans. on Intelligent Transportation Systems, vol. 5, no. 2, pp. 57-68, June 2004.
[6] T. Zhao and R. Nevatia, “Tracking Multiple Humans in Complex Situations,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 26, no. 9, pp. 1208-1221, Sept. 2004.
[7] I. Haritaoglu, D. Harwood, and L. S. Davis, “W4: Real-Time Surveillance of People and Their Activities,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 809-830, Aug. 2000.
[8] C. J. Pai, H. R. Tyan, Y. M. Liang, H.Y. Mark Liao, and S.W. Chen, “Pedestrian Detection and Tracking at Crossroad,” Proc. IEEE int’l Conf. Image Processing, vol. 2, pp. 101-104, Sept. 2004.
[9] J. H. Jean and R. Y. Wu, “Adaptive Visual Tracking of Moving Objects Modeled with Unknown Parameterized Shape Contour,” IEEE int’l Conf. Networking, Sensing and Control, vol. 1, pp. 76-81, Taipei, Taiwan, 2004.
[10] S. F. Lin, J. Y. Chen, and H. X. Chao, “Estimation of Number of People in Crowded Scenes Using Perspective Transformation,” IEEE Trans. on Systems, Man, and Cybernetics, vol. 31, no. 6, pp. 645-654, Nov. 2001.
[11] T. Coianiz, M. Boninsegna, and B. Caprile, “A Fuzzy Classifier for Visual Crowding Estimates,” IEEE int’l Conf. Neural Networks, vol. 2, pp. 1174-1178, Nagoya, Japan, 1996.
[12] A. N. Marana, S. A. Velastin, L. F. Costa, and R. A. Lotufo, “Estimation of Crowd Density Using Image Processing,” IEE Colloquium Image Processing for Security Applications, pp. 11/1-11/8, 1997.
[13] S. Y. Cho, T. W. S. Chow, and C. T. Leung, “A Neural-Based Crowd Estimation by Hybrid Global Learning Algorithm,” IEEE Trans. on Systems, Man and Cybernetics, vol. 29, no. 4, pp. 535-541, Aug. 1999.
[14] Y. Iwasaki, “A Measurement Method of Pedestrian Traffic Flows by Use of Image Processing and its Application to a Pedestrian Traffic Signal Control,” Proc. IEEE int’l Conf. Intelligent Transportation System, pp. 310-313, Oct. 1999.
[15] R. Cucchiara, P. Mello, and M. Piccardi, “Image Analysis and Rule-based Reasoning for Traffic Monitoring, ” IEEE Trans. on Intelligent Transportation System, vol. 3, no. 1, pp. 37-47, March 2002.
[16] G. L. Foresti, V. Murino, and C. Regazzoni, “Vehicle Recognition and Tracking from Road Image Sequences,” IEEE Trans. on Vehicular Technology, vol. 48, no. 1, pp. 301-318, Jan. 1999.
[17] T. Zhao and R. Nevatia, “Car Detection in Low Resolution Aerial Image,” Proc. IEEE int’l Conf. Computer Vision, vol. 1, pp. 710-717, July 2001.
[18] L.W. Tsai, J. W. Hsieh, and K. C. Fan, “Vehicle Detection Using Normalized Color and Edge Map,” IEEE int’l Conf. Image Processing, vol. 2, pp. 598-601, Sept. 2005.
[19] J. Wu, X. Zhang and J. Zhou, “Vehicle Detection in Static Road Images with PCA- and- Wavelet-based Classifier,” IEEE int’l Conf. Intelligent Transportation System, pp. 740-744, Oakland, C.A., USA, Aug. 2001.
[20] Z. Sun, G. Bebis, and R. Miller, “On-road Vehicle Detection Using Evolutionary Gabor Filter Optimization,” IEEE Trans. on Intelligent Transportation System, vol. 6, pp. 125-137, June 2005.
[21] K. T. Song and J. C. Tai, “Image-Based Turn Ratio Measurement at Road Intersection,” IEEE int’l Conf. Image Processing, vol. 1, pp. 1077-1080, Sept. 2005.
[22] S. Kamijo and M. Sakauchi, “Simultaneous Tracking of Pedestrians and Vehicles by the Spatio-Temporal Markov Random Field Model,” IEEE int’l Conf. System, Man, and Cybernetics, vol. 4, pp. 3732-3737, Oct. 2003.
[23] Y. Iwasaki, “An Image Processing System to Measure Vehicular Queues and an Adaptive Traffic Signal Control By Using The Information of The Queues,” IEEE int’l Conf. Intelligent Transportation System, pp.195-200, Nov. 1997.
[24] C. P. Pappis and E. H. Mamdani, “A Fuzzy Logic Controller for a Traffic Junction,” IEEE Trans. on System, Man, and Cybernetics, pp. 707-717, 1977.
[25] J.Favilla, A. Machion, and F. Gomide, “Fuzzy Traffic Control: Adaptive Strategies,” Second IEEE int’l Conf. Fuzzy Systems, vol. 1, pp. 506-511, April 1993.
[26] G. Beauchamp-Baez, E. Rodriguez-Morales, and E.L. Muniz-Marrero, “A Fuzzy Logic Based Phase Controller for Traffic Control,” Proc. Sixth IEEE int’l Conf. Fuzzy Systems, vol. 3, pp. 1533-1539, July 1997.
[27] S. Chiu and S. Chand, “Adaptive Traffic Signal Control Using Fuzzy Logic,” Second IEEE int’l Conf. Fuzzy Systems, vol. 2, pp. 1371-1376, March 1993.
[28] J. Nittymäki, T. Kosonen, and R. Nevala, “Fuzzy Traffic Signal Control in Major Arterials,” Proc. IEEE int’l Conf. Intelligent Transportation System, pp. 346-351, Aug. 25-29, 2001.
[29] J. Nittymäki and R. Nevala, “Fuzzy Adaptive Traffic Signal Control- Principles and Results,” IFSA World Congress and 20th NAFIPS International Conference, vol. 5, pp. 2870-2875, 2001.
[30] C. H. Chou and J. C. Teng, “A Fuzzy Logic Controller for Traffic Junction Signals,” Information Sciences, vol. 143, pp. 73-97, 2002.
[31] Y. C. Chiou and L. W. Lan, “Adaptive Traffic Signal Control with Iterative Genetic Fuzzy Logic Controller,” Proc. IEEE int’l Conf. Networking, Sensing, and Control, vol. 1, pp. 287-292, March 2004.
[32] D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach. Upper Saddle River, NJ: Prentice Hall, 2003.
[33] F. Lv, T. Zhao, and R. Nevatia, “Self-Calibration of a Camera from Video of a Walking Human,” Proc. Int’l Conf. Pattern Recognition, vol. 1, pp. 562-567, Quebec, Canada, 2002.
[34] A. Criminisi, I. Reid, and A. Zisserman, “Single View Geometry,” Int’l Journal Computer Vision, 40(2), pp. 123-148, 2000.
[35] R. M. Haralick, “Statistical and Structural Approaches to Texture,” Proceedings of the IEEE, vol. 67, no.5, pp. 786-804, May 1979.
[36] M. Friedman and A. Kandel, Introduction to Pattern Recognition. London, UK: Imperial College, 1999.
[37] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Upper Saddle River, NJ: Prentice Hall, 2002.
[38] C. T. Lin and C. S. George Lee, Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems. Upper Saddle River, NJ: Prentice Hall, 1996.
[39] A. D. May, Traffic Flow Fundamentals. Eaglewood Cliffs, NJ: Prentice Hall, 1990.
[40] F. V. Webster, Traffic Signal Settings. London, UK: Road Research Laboratory, Technical Paper, no. 39, 1958.
[41] S. M. Bhandarkar and X. Luo, “An Efficient Background Updating Scheme for Real-Time Traffic Monitoring,” IEEE Int’l Conf. Intelligent Transportation Systems, vol. 3, no. 6, pp. 859-864, Parma, Italy, 2004.
[42] H. K. Lam, O. S. Au, and C. W. Wong, “Automatic White Balancing Using Standard Deviation of RGB Components,” Proc. Int’l Symposium, Circuits and Systems, vol. 3, pp. 921-924, Vancouver, Canada, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top