[1] I. W. Selesnick and C. S. Burrs, “Constrained least square design of FIR filters without specified transition bands,” IEEE Trans. Signal Processing, vol. 37, no. 8, Aug.,1996.
[2] Y. Liu, C. H. Tseng, and K. L. Teo, “A unified quadratic semi-infinite programming approach to time and frequency and domain constrained digital filter design,” Communications in Information and Systems, vol. 2, no. 4, pp. 399-410, Dec., 2002.
[3] S. Ito, Y. Liu, and K. L. Teo, “A dual parametrization method for convex semi-infinite programming,” Annals of Operations Research, 98, 189-213, 2000.
[4] T. Hoang, Convex Analysis and Global Optimization, Kluwer Academic Publishers, 1998.
[5] D. G. Luenberger, Optimization by Vector Space Method, New York: Wiley, 1969.
[6] R. T. Rockafellar, Convex Analysis, Princeton NJ: Princeton Univ. Press, 1970.
[7] C. H. Tseng, K. L. Teo, A. Cantoni, and Z. Zang, “A dual approach to continuous-time enveloped-constrained filter design via orthonormal filters,” IEEE Trans. Circuits Syst. I. vol. 46, pp. 1042-1054, 1999.
[8] D. P. Bertsekas, Nonlinear Programming, 2nd ed.,Belmont, Mass.: Athena Scientific, 1999.
[9] H. H. Dam, K. L. Teo, S. Nordebo, and A. Cantoni, “The dual parameterization approach to optimal least square FIR filter design subject to maximum error constraints,” IEEE Trans. Signal Processing, vol. 48, no. 8, Aug. 2000.
[10] A. V. Oppenheim, R. W. Schafer and J. R. Buck,Discrete-Time Signal Processing,2nd ed., Prentice Hall, 1998.
[11] 陳志宏,「最小最大最佳化頻譜近似FIR濾波器設計」,交通大學電機與控制工程學系碩士論文,民國92年六月。