跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/08 02:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李業琳
論文名稱:去醣基人類絨毛膜促性腺β次單元體之菌體表現
論文名稱(外文):Bacterial Expression of Non-glycosylated Human Chorionic Gonadotropin β-subunit(NG-hCGB)
指導教授:張正張正引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:理學院碩士在職專班應用科技學程
學門:電算機學門
學類:網路學類
論文種類:學術論文
畢業學年度:95
語文別:中文
論文頁數:84
中文關鍵詞:去醣基人類絨毛膜促性腺
外文關鍵詞:Non-glycosylatedHuman Chorionic GonadotropinBacterial Expression
相關次數:
  • 被引用被引用:0
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
人類絨毛膜促性腺激素β次單元體 (hCGB) 對於多種癌細胞的增生存在著明確的正向促進關係,因為癌細胞上大量表現hCG受體與其鍵結後導致訊息傳遞作用而活化癌細胞生長因子,因此hCGB與癌細胞上的受體之鍵結互動扮演著關鍵性的角色。另一方面,已知醣基支鏈對於絨毛膜促性腺激素訊息傳遞過程之重要性,若除去醣基之hCGβ-次單元體的傳遞活性因此而降低甚多,故醣基存在與否嚴重影響到hCGB與其受體鍵結後引發的訊息傳遞活性。
本研究之目的為試圖利用大腸桿菌重組去醣基hCGB變異體(NG-hCGB variant) ,並表現出其蛋白質。期望去醣基hCGB變異體對於癌細胞的訊息傳遞有所影響,因而降低或壓抑癌細胞的增生能力。首先利用聚合�○s鎖反應放大hCGB和hCG’ B兩段基因,並將其分別接合到表現載體pQE-30中,各大腸桿菌M15 [pREP4] 作為表現宿主。未來期望去醣基絨毛膜促性腺β-次單元體能扮演癌細胞的抑制劑或壓抑多種癌細胞發育之重要角色。
目錄

中文摘要...................................................................................................iii
英文摘要...................................................................................................iv
誌謝…........................................................................................................v
目錄….......................................................................................................vi
圖目錄.......................................................................................................ix
表目錄.......................................................................................................xi
附錄...........................................................................................................xi

第一章 緒論
1-1醣蛋白激素家族……………………................................................1
1-1-1簡介…………….........................................................................1
1-1-2結構特性…………………….....................................................2
1-1-3醣基支鏈之組成…….................................................................3
1-1-4醣基支鏈之重要性….................................................................4
1-2人類絨毛膜促性腺激素….....................…………...........................5
1-2-1人類絨毛膜促性腺激素β-次單元體........................................5
1-2-2製造與分泌.................……........................................................7
1-2-3人類絨毛膜促性腺激素之生理功能.........................................8
1-3人類黃體激素....................................................................................9
1-3-1人類黃體激素β-次單元體........................................................9
1-3-2製造與分泌.................……......................................................10
1-3-3人類黃體激素之生理功能.......................................................11
1-4 CGβ-次單元體與LHβ-次單元體之關係……….………………..13
1-4-1 CGβ和LHβ基因演化分析………………………………….13
1-4-2 CG和LH與receptor的關係………………………………...14
1-4-3 CGβ和LHβ臨床上的意義………………………………….16
1-5研究動機與目的..............................................................................16

第二章 材料
2-1 菌株與細胞株.................................................................................19
2-2 培養基.............................................................................................19
2-3 人類胎盤cDNA庫 (cDAN library) .............................................20
2-4 轉殖載體.........................................................................................20
2-5 藥品試劑.........................................................................................20
2-6 溶液與緩衝液.................................................................................22
2-7 儀器.................................................................................................25

第三章 方法
3-1 實驗流程.........................................................................................26
3-2 聚合�○s鎖反應 (polymerase chain reaction)………..................27
3-2-1 引子設計….............................................................................27
3-2-2 PCR材料與程式......................................................................28
3-3 yT&A載體構築...............................................................................29
3-3-1 PCR產物之瓊脂洋菜膠體電泳..............................................29
3-3-2 PCR產物之純化......................................................................30
3-3-3 與yT&A載體進行接合反應 (Ligation) ...............................31
3-3-4 大腸桿菌JM109之轉形 (Transformation) ...........................31
3-3-5 質體DNA之微量製備 (miniprep) ........................................32
3-4 pQE-30載體構築.............................................................................32
3-4-1質體hCGB-yT&A之限制�﹞螺�...........................................32
3-4-2表現載體pQE-30之限制�﹞螺�............................................33
3-4-3 與表現載體pQE-30進行接合反應………………...……....34
3-4-4 大腸桿菌M15之轉形……………………………………….34
3-4-5 選殖鑑定及DNA定序 (DNA sequencing)…………………34
3-5 去醣基hCGβ- 和hCG’β-次單元體之表現及純化………..…….35
3-5-1去醣基hCGβ- 和hCG’β-次單元體之小量表現…..…..…….35
3-5-2 SDS-PAGE…………………………………...……………….36
3-5-3西方墨點法……………….…………...……………………...38
3-5-4決定去醣基hCGβ- 和hCG’β-次單元體之溶解性…..….….40
3-5-5去醣基hCGβ- 和hCG’β-次單元體之大量表現…………….40
3-5-6去醣基hCGβ- 和hCG’β-次單元體之純化………..….…….40

第四章 結果與討論
4-1 放大hCGβ- 和hCG’β-...................................................................43
4-2 yT&A選殖載體之構築...................................................................44
4-3 pQE-30表現載體之構築.................................................................44
4-4去醣基hCGβ- 和hCG’β-次單元體之表現....................................46
4-5去醣基hCGβ- 和hCG’β-次單元體之純化....................................49

第五章 結論與未來展望......................................................................51

第六章 參考文獻..................................................................................55



圖目錄

圖1. 醣蛋白結構示意圖...........................................................................2
圖2. FSH-受體複合物晶體之緞帶示意圖.............................…………..3
圖3. TSH中被發現的N-連結寡醣支鏈...................................................4
圖4. CGβ和LHβ基因串之組織和表現...................................................6
圖5. 依據hCG的結晶所做的分子模型圖…………………………….7
圖6. 懷孕期間胎盤激素之分泌………………………………………..8
圖7. 女性生理之性激素調控網.............................................................11
圖8. 類固醇生成作用(steroidogenesis)主要反應路徑圖.....................12
圖9. 促性腺醣蛋白激素之演化假想模型.............................................13
圖10. pLH receptor 結構與cDNA序列.................................................14
圖11. Receptor 與 Hormone 作用之示意圖…………………………15
圖12. 聚合�○s鎖反應之反應程式…………………………………...29
圖13. Transfer cassette…………………………….................................38
圖14. hCGB和hCG’B之聚合�○s鎖反應產物之洋菜膠體電泳
結果……………..………............................................................65
圖15. 質體hCGB-yT&A切割反應之電泳結果…………………..…66
圖16. 以限制��鑑定將轉形進表現宿主M15[pREP4]之質體:hCGB-pQE30其切割反應之電泳結果......................................66
圖17. 以限制��鑑定將轉形進表現宿主M15[pREP4]之質體:hCG’B-pQE-30其切割反應之電泳結果....................................67
圖18. hCGB-pQE30之DNA定序與預期序列之比對結果.................68
圖19. hCG’B-pQE-30之DNA定序與預期序列之比對結果…………69
圖20. NG-hCGβ-次單元體(IPTG濃度與時間關係)之小量表現SDS-PAGE染色結果……………………….............................70
圖21. NG- hCG’β-次單元體(IPTG濃度與時間關係)之小量表現SDS-PAGE染色結果……………………….............................71
圖22. NG-hCG β-次單元體小量表現和存在形式之SDS-PAGE染色結果…………………………………………..................................72
圖23. NG-hCG β-次單元體小量表現和使用Buffer B 溶解其存在形式之SDS-PAGE染色結果…………………..................................73
圖24. NG- hCG’β-次單元體小量表現和存在形式之SDS-PAGE染色結果…………………………………………..................................74
圖25. NG- hCG’β-次單元體小量表現和使用Buffer B 溶解其存在形式之SDS-PAGE染色結果…………………..............................75
圖26.西方墨點法鑑定NG-hCG β-和NG-hCG’β-次單元體……..….76
圖27. NG-hCG β-次單元體純化方法A之SDS-PAGE染色結果…….77
圖28. NG- hCG’β-次單元體純化方法A之SDS-PAGE染色結果….78
圖29. NG-hCG β-次單元體純化方法B之SDS-PAGE染色結果…….79
圖30. NG- hCG’β-次單元體純化方法B之SDS-PAGE染色結果….80
圖31. NG- hCGβ-和NG- hCG’β-次單元體純化SDS-PAGE染色結果………………………………………………………..………81
圖32. NG- hCG’β-次單元體大量培育後純化SDS-PAGE染色結果..82







表目錄

表1. 使用之大腸桿菌品種與其基因型類別………………………….22
表2. 聚合�○s鎖反應之引子………………………………………….33
表3. 聚合�○s鎖反應之材料………………………………………….34
表4. hCGB-yT&A之切割反應材料………………………..………….39
表5. pQE30之切割反應材料………..………………………………...40
表6. 轉形後之菌株類型……………………………………………….41
表7. SDS-polyacrylamide gel之藥品配方……………………………..43




附錄

附錄A. yT&A選殖載體之圖譜………………………………………..83
附錄B. pQE-30表現載體之圖譜………………………………………84
1. Pierce J, Parsons TF (1981) Glycoprotein hormones:Structure, function. Annu Rev Biochem 50, 465-495
2. Gharib SD, Wierman ME, Shupnik MA, Chin WW (1990) Molecular biology of the pituitary gonadotropins. Endocr Rev 11, 177-199
3. Jameson JL, Hollenberg AN (1993) Regulation of Chorionic gonadotropin gene expression. Endocr Rev 14, 203-221
4. Hsueh AJW, Adashi EY, Jones PBC, Welsh TH (1994) Hormonal regulation of the differentiation of cultured ovarian granulose cells. Endocr Rev 5, 76-128
5. Vanderhyden BC, Armstrong DT (1990) Effects of gonadotropins and granulose cell secretions on the maturation and fertilization of rat oocytes in vitro. Mol Reprod Dev 26, 337-346
6. Davies AG (1981) Role of FSH in the control of testicular function. Arch Androl 7, 97-108
7. Magner JA (1990) Thyroid-stimulating hormone: biosynthesis, cell biology and bioactivity. Endocr Rev 11, 354-381
8. Yves Combaruous (1992) Molecular Basis of the Specificity of Binding of Glycoprotein Hormones to Their Receptors. Endocr Rev 13, 670-691
9. Li CH, Starman B (1964) Molecular weight of sheep pituitary interstitial cell-stimulating hormone. Nature 202, 291-292
10. Boothby, M., et al. (1981) A single gonadotropin alpha-subunit gene in normal tissue and tumor-derived cell lines. J Biol Chem 256(10), 5121-5127
11. Naylor S.L., Chin W.W., Goodman H.M., Lalley P.A., Sakaguchi A.Y. (1983) Chromosome assignment of genes encoding the alpha and beta subunits of glycoprotein hormones in man and mouse. Somatic Cell Genet 9(6), 757-770
12. Fiddes, J.C. and H.M. (1979) Goodman, Isolation, cloning and sequence analysis of the cDNA for the alpha-subunit of human chorionic gonadotropin. Nature 281(5730), 351-356
13. Ulloa-Aguirre, A. and C. Timossi (1998) Structure-function relationship of follicle-stimulating hormone and its receptor. Hum Reprod Update 4(3), 260-283
14. Fan, Q.R. and Hendrickson W.A. (2005) Structure of human follicle-stimulating hormone in complex with its receptor. Nature 433(7023), 269-277
15. Baenziger, J.U. and Green E.D. (1988) Pituitary glycoprotein hormone oligosaccharides: structure, synthesis and function of the asparagine-linked oligosaccharides on lutropin, follitropin and thyrotropin. Biochim Biophys Acta 947(2), 287-306
16. Mariusz W. Szkudlinski, Mathis Grossmann, and Bruce D. Weintraub (1996) Structure-Function Studies of Human TSH. Trends Endocrinol Mevab 7(8), 277-286
17. Keene, J.L., Nishimori, K., Galway, A.B., Matzuk, M.M., Hsueh A.J.W., and Boime, I. (1994) Recombinant deglycosylated human FSH is an antagonist of human FSH action in cultured rat granulosa cells. Endocr J 2, 175-179
18. Flack M.R., Froehlich J., Bennet A.P., Anasti J., and Nisula B.C. (1994) Site-directed mutagenesis defines the individual roles of the glycosylation sites on follicle-stimulating hormone. J Biol Chem 269(19), 14015-14020
19. Bishop L.A., Robertson D.M., Cahir N., and Schofield P.R. (1994) Specific roles for the asparagine-linked carbohydrate residues of recombinant human follicle stimulating hormone in receptor binding and signal transduction. Mol Endocrinol 8(6), 722-731
20. Matzuk, M. M. and Boime, I. (1988b) The role of the asparagine-linked oligosaccharides of the alpha subunit in the secretion and assembly of human chorionic gonadotrophin. J Cell Biol 106, 1049-1059
21. Matzuk, M.M., Keene J.L., and Boime I. (1989) Site specificity of the chorionic gonadotropin N-linked oligosaccharides in signal transduction. J Biol Chem 264(5), 2409-2414
22. Valove F.M., Finch C., Anasti J.N., Froehlich J., and Flack M.R. (1994) Receptor binding and signal transduction are dissociable functions requiring different sites on follicle-stimulating hormone. Endocrinology 135(6), 2657-2661.
23. Dias J.A., Lindau-Shepard B., Hauer C., and Auger I. (1998) Human follicle-stimulating hormone structure-activity relationships. Biol Reprod 58(6), 1331-1336
24. Ren, P., Sairam M.R., and Yarney T.A. (1995) Bacterial expression of human chorionic gonadotropin alpha subunit: studies on refolding, dimer assembly and interaction with two different beta subunits. Mol Cell Endocrinol 113(1), 39-51
25. Morgan, F. J., Birken, S., and Canfield, R. E. (1975) The amino acid sequence of human chorionic gonadotropin. The alpha subunit and beta subunit. J Biol Chem 250, 5247-5258
26. Paul Policastro, Catherine E. Ovitt, Makoto Hoshina, Hideoki Fukuoka, Mark R. Boothby, and Irving Boine (1983) The β Subunit of Human Chorionic Gonadotropin Is Encoded by Multiple Genes. J Biol Chem 258(19), 11492-11499
27. Talmadge, K., Boorstein, W. R., and Fiddes, J.C. (1983). DNA 2, 281-289
28. Boorstein, W. R., Vamvakopoulos, N. C., and Fiddes, J. C. (1982). Nature 300, 419-422
29. J. L. Jameson and C. M. Lindell (1988) Isolation and characterization of the human chorionic gonadotropin beta subunit (CG beta) gene cluster: regulation of transcriptionally active CG beta gene by cyclic AMP. Mol Cell Biol 8, 5100-5107
30. Masaki Bo and Irving Boime (1992) Identification of the Transcriptionally Active Genes of the Chorionic Gonadotropin beta Gene Cluster in Vivo. J Biol Chem 267(5), 3179-3184
31. Tetsuo Otani, Fumiko Otani, Malgorzata Krych, David D. Chaplin, and Irving Boime (1988) Identification of a Promoter Region in the CGβ Gene Cluster. J Biol Chem 263(15), 7322-7329
32. Karen Talmadge, William R. Boorstein, Nikos C. Vamvakopoulos, Mary-Jane Gething and John C. Fiddes (1984) Only three of the seven human chorionic gonadotropin beta subunit genes can be expressed in the placenta. Nucleic Acids Research 12, 8415-8436
33. Lapthorn A. J., Harris D. C., Littlejohn A., Lustbader J. W., Canfield R. E., Machin K. J., Morgan F. J., Isaacs N. W. (1994) Crystal structure of human chorionic gonadotropin. Nature 369, 455-461
34. Wu H., Lustbader J. W., Liu Y., Canfield R. E., Hendrickson W. A. (1994) Structure of human chorionic gonadotropin at 2.6A resolution from MAD analysis of the selenomethionyl protein. Structure 2, 545-558
35. Shuang-Bao Hu, Leslie Johnaon, Patrick C. Roche, and Henry T. Keutmann (1997) A Functional Determinant in Human Luteinizing Hormone and Chorionic Gonadotropin: Differential Effect of Mutations about β-GLN-54. Endocr 138(4), 1627-1633
36. Ringler G. E., Strauss J. F. (1990) In vitro systems for the study of human placental endocrine function. Endocr Rev 11, 105-123
37. (1976) Nature 260, 480-481
38. J. Larry Jameson and Anthony N. Hollenberg (1993) Regulation of Chorionic Gonadotropin Gene Expression. Endocr Rev 14(2), 203-221
39. Pittaway D. E., Reish R. L., Wentz A. C. (1995) Doubling Times of Human Chorionic Gonadotropin Increase in Early Viable Intrauterine Pregnancies. Am J Obstet Gynecol 152, 299-302
40. Tulchinsky D, Hobel C. J. (1993) Plasma Human Chorionic Gonadotropin, Estrone, Estradiol, Estriol, Progesterone, 17 alpha-hydroxyprogesterone in Human Pregnancy. Am J Obstet Gynecol 117, 884-893
41. Csapo A. I., Pulkkinen M. O., Wiest W. G. (1973) Effects of Lutectomy, Progesterone Replacement Therapy in Early Pregnant Patients. Am J Obstet Gynecol 115, 1061-1067
42. Aspillaga M. O., Whittaker P. G., Taylor A., Lind T. (1983) Some New Aspects of the Endocrinological Response to Pregnancy. Br J Obstet Gynecol 90, 596-603
43. Braunstein G. D., Rasor J., Adler D., Danza H., Wade M. F. (1976) Serum Human Chorionic Gonadotrophin Levels Throughout Normal Pregnancy. Am J Obstet Gynecol 126, 678-681
44. Paul F. Policastro, Susan Daniels-McQueen, Georges Carle, and Irving Boime (1986) A Map of the hCGβ-LHβ Gene Cluster. J Biol Chem 261(13), 5907-5916
45. Madge Y. Graham, Tetsuo Otani, Irving Boime, Maynard V. Olson, Georges F. Carle and David D. Chaplin (1987) Cosmid Mapping of the Human Chorionic Gonadotropin beta Subunit Genes by Field-Inversion Gel Electrophoresis. Nucleic Acids Research 15(11), 4437-4448
46. Nobuhiko Suganuma, Kenji Furui, Fumitaka Kikkawa, Yutaka Tomoda, and Madoka Furuhashi (1996) Effects of the Mutations (Trp8→Arg and Ile15→Thr) in Human Luteinizing Hormone (LH) beta-Subunit on LH Bioactivity in Vitro and in Vivo Endocr 137(3), 831-838
47. Christel Nilsson, Min Jiang, Kim Pettersson, Antti litia, Minna Makela, Henrik Simonsen, Simon Easteal, Rene J. Herrera and Ilpo Huhtaniemit (1998) Determination of a common genetic variant of luteinizing hormone using DNA hybridization and immunoassays. Clinical Endocr 49, 369-376
48. Pettersson K. and Soderholm J. R. (1991) Individual differences in LH immunoreactivity revealed by monoclonal antibodies. Clinical Chem 37, 333-340
49. Furui K., Suganuma N., Tsukahara S-I., Asada Y., Kikkawa F., Tanaka M., Ozawa T. and Tomoda Y. (1994) Identification of two point mutations in the gene coding luteinizing hormone (LH) β-subunit, associated with immunologically anomalous LH variants. J Clinical Endocrinology and Metabolism 78, 107-113
50. Martin-Du-Pan, R. C., Horak M. and Bischof P. (1994) Clinical significance of invisible or partially visible luteinizing hormone. Human Reproduction 9, 1987-1990
51. Vander, A.J., J.H. Sherman, and D.S. Luciano, (1994) Human Physiology/the mechanisms of body function. 6 ed 669.
52. Carr, B.R., Williams Textbook of endocrinology. Disorders of the ovary and female reproductive tract. J.D. Wilson and D.W. Foster. 1992, 733-798.
53. Griffin, J.E. and J.D. Wilson, Williams Textbook of Endocrinology. Disorders of the testes and the male reproductive tract. J.D. Wilson and D.W. Foster. 1992, 799-852.
54. Thorner, M.O., Vance, M.L., Horvath, E., and Kovacs, K., Williams Textbook of Endocrinology. The anterior pituitary. J.D. Wilson and D.W. Foster. 1992, 221-310.
55. Colorado state university. http://www.vivo.colostate.edu/
56. W.H., D., Textbooks of endocrinology. The anterior pituitary gland. W. J.D. and F. D.W. 1985. 586-613.
57. Guyton, A.C. and J.E. Hall, Human physiology and mechanisms of disease. Female physiology before pregnancy; and the female hormones. 1997. 963-976.
58. Herve Lejeune, Pascale Sanchez, Franck Chuzel, Dominique Langlois, Jose Maria Saez (1998) Time-course effects of human recombinant luteinizing hormone on porcine Leydig cell specific differentiated functions. Molecular and Cellular Endocrinology 144, 59-69
59. M. D. Li and J. J. Ford (1998) A comprehensive evolutionary analysis based on nucleotide and amino acid sequences of the α- and β-subunits of glycoprotein hormone gene family. J Endocr 156, 529-542
60. Prat F., Sumpter J. P. and Tyler C. R. (1996) Validation of radioimmunoassay for two salmon gonadotropins (GTH I and GTH II) and their plasma concentrations throughout the reproductive cycle in male and female rainbow trout (Oncorhynchus mykiss). Biology of Reproduction 54, 1375-1382
61. Swanson P. (1991) Salmon gonadotropins: reconciling old and new ideas. In Proceedings of the Fourth International Symposium on the Reproductive Physiology of Fish, pp 2-7, Eds A. P. Scott, Sumpter J. P., Kime D. E. and Rolfe M. S. Sheffield, UK: FishSymp
62. Glenn A. Maston and Maryellen Ruvolo (2002) Chorionic gonadotropin has a recent origin within primates and an evolutionary history of selection. Mol Biol Evol 19(3), 320-335
63. Talmadge K., N. C. Vamvakopoulos and J. C. Fiddes (1984) Evolution of the genes for the β subunits of human chorionic gonadotropin and luteinizing hormone. Nature 307, 37-40
64. Yan-Bo Xie, Haiyun Wang, and Deborah L. Segaloff (1990) Extracellular Domain of Lutropin/Choriogonadoropin Receptor Expressed in Transfected Cells Binds Choriogonadotropin with High Affinity. J Biol Chem 265(35), 21411-21414
65. K. M. J. Menon, Utpal M. Munshi, Christine L. Clouser, and Anil K. Nair (2004) Regulation of Luteinizing Hormone/Human Chorionic Gonadotropin Receptor Expression: A Perspective. Bio Repr 70, 861-866
66. Schoroeder H. R., Halter C. M. (1983) Specificity of human beta-choriogonadotropin assays for hormone and for an immunoreactive fragment present in urine during normal pregnancy. Clin Chem 29, 667
67. Ray K. Iles, Mohammed K. Javid, Lionel K. Gunn, and Tim Chard (1999) Cross-Reaction with Luteinizing Hormone β-Core is Responsible for the Age-dependent Increase of Immunoreactive β-Core Fragment of Human Chorionic Gonadotropin in Women with Nonmalignant Conditions. Clin Chem 45(4), 532-538
68. Wei Wu, Ameae M. Walker (2006) Human Chorionic Gonadotropin β (HCGβ) Down-Regulates E-cadherin and Promotes Human Prostate Carcinoma Cell Migration and Invasion. Cancer 106, 68-78
69. S. Birken, Y. Chen, M. A. Gawinowicz, G. M. Agosto, R. E. Canfield, and A. S. Hartree (1993) Structure and Significance of Human Luteinizing Hormone-β Core Fragment Purified from Human Pituitary Extracts. Endocr 133(3), 985-989
70. Tieva A., Stattin P., Wikstrom P., Bergh A., Damber J. E. (2001) Gonadotropin-releasing hormone receptor expression in the human prostate. Prostate 47, 276-284
71. Fekete M., Zalatnai A., Comaru-Schally A-M., Schally A. V. (1989) Membrane receptors for peptides in experimental and human pancreatic cancers. Pancreas 4, 521-528
72. Grundker C., Volker P., Griesinger F., Ramaswamy A., Nagy A., Schally A. V., Emons G. (2002) Amtitumor effects of the cytotoxic LHRH analog AN-152 on human endometrial and ovarian cancers xenograged into nude mice. Am J Obstet Gynecol 187, 528-537
73. Carola Leuschner and William Hansel (2005) Targeting Breast and Prostate Cancers Through Their Hormone Receptors. Bio Repr 73, 860-865
74. Carola Leuschner, Frederick M. Enright, Barbara Gawronska, and William Hansel (2003) Membrane disrupting lytic peptide conjugates destroy hormone dependent and independent breast cancer cells in vitro and in vivo. Breast Cancer Research and Treatment 78, 17-27
75. Gabriel Bodek, Nafis Ahmed Rahman, Monika Zaleska, Rabah Soliymani, Hikka Lankinen, William Hansel, Ilpo Huhtaniemi, and Adam J. Ziecik (2003) A novel approach of targeted ablation of mammary carcinoma cells through luteinizing hormone receptors using Hecate-CGβ conjugate. Breast Cancer Research and Treatment 79, 1-10
76. C. Aguirre, F. C. L. Jayes, and J. D. Veldhuis (2000) Luteinizing Hormone (LH) Drive Diverse Intracellular Calcium Second Messenger Signals in Isolated Porcine Intracellular Ca2+ Oscillatory Cells by Higher Concentrations of LH. Endocr 141(6), 2220-2228
77. Loren K. Mell, Jeffrey J. Meyer, Maria Tretiakova, Andrey Khramtsov, Can Gong, S. Diane Yamada, Anthony G. Montag, and Arno J. Mundt (2004) Prognostic Significance of E-Cadherin Protein Expression in Pathological Stage I-III Endometrial Cancer. Clinical Cancer Research 10, 5546-5553
78. Pei Ching Lan, Chi Feng Tseng, Meng Chia Lin, C. Allen Chang (2006) Expression and purification of human placenta lactogen in Escherichia coli. Protein Expression and Purification 46, 285-293
79. The QIAexpressionist: A handbook for high-level expression and purification of 6xHis-tagged proteins.
80. Samaddar M., Babu P.S., Catterall J.F., and Dighe R.R. (1999) Identification of an attenuating region in the bovine follicle-stimulating hormone beta subunit mRNA that decreases its expression in E. coli. Gene 228(1-2), 253-260
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top