|
[1] Y. Oana, “Current and future technology of low-temperature poly-Si TFT-LCDs,” Journal of the SID, vol. 9, pp. 169-172, 2001. [2] S. Morozumi, K. Oguchi, S. Yazawa, Y. Kodaira, H. Ohshima, and T. Mano, “B/W and color LC video display addressed by poly-Si TFTs,” SID Dig., pp.156, 1983. [3] R. E. Proano, R. S. Misage, D. Jones, and D. G. Ast, “Guest-host active matrix liquid-crystal display using high-voltage polysilicon thin film transistors,” IEEE Trans. Electron Devices, vol. 38, pp. 1781, 1991. [4] S. Batra, “Development of drain-offset (DO) TFT technology for high density SRAM’s,” Extended Abstracts, vol.94-2, in Electrochemical Soc. Fall Mtg., Miami Beach, FL, Oct. pp. 677,1994. [5] N. D. Young, G. Harkin, R. M. Bunn, D. J. McCulloch, and I. D. French, “The fabrication and characterization of EEPROM arrays on glass using a low temperature poly-Si TFT process,” IEEE Trans. Electron Devices, vol. 43, pp. 1930-1936, 1996. [6] M. Cao, et al., “A simple EEPROM cell using twin polysilicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 15, pp. 304, 1994. [7] T. Kaneko, Y . Hosokawa, M. Tadauchi, Y . Kita and H. Andoh, “400 dpi integrated contact type linear image sensors with poly-Si TFT’s analog readout circuits and dynamic shift registers,” IEEE Trans. Electron Devices, vol. 38, no. 5 pp. 1086-1096, 1991. [8] N. Yamauchi, Y . Inada and M. Okamur a, “An intergated photodetector-amplifier using a-Si p-i-n photodiodes and poly-Si thin-film transistors,” IEEE Photonic Tech. Lett., vol. 5, pp. 319, 1993. [9] K. Banerjee, S. J. Souri, P. Kapur, and K. C. Saraswat, “3-D ICs: a novel chip design for improving deep-submicrometer interconnect performance and system-on-chip integration,” Proceedings of the IEEE, vol.89, pp. 602-633, 2001. [10] C. H. Fa, and T. T. Jew, “The polysilicon insulated-gate field-effect transistor,” IEEE Trans. Electron Devices, vol. 13, no. 2, pp. 290, 1966. [11] W. G. Hawkins, “Polycrystalline -silicon device technology for large-area electronics,” IEEE Trans. Electron Devices, vol. 33, pp. 477-481, 1986. [12] I. -W. Wu, “Cell design considerations for high-aperture-ratio direct-view and projection polysilicon TFT-LCDs,” in SID Tech. Dig., pp. 19, 1995. [13] A. Nakamura, F. Emoto, E. Fujii and A. Tamamoto, “A high-reliability, low-operation-voltage monolithic active-matrix LCD by using advanced solid-phase growth technique,” in IEDM Tech. Dig., pp.847, 1990. [14] R. B. Iverson and R. Reif, “Recrys tallization of amorphized polycrystalline silicon films on SiO2: temperature dependence of the crystallization parameters,” J. Appl. Phys., vol. 62, no. 5, pp. 1675-1681, 1987. [15] F. Emoto, K. Senda, E. Fujii, A. Nakamura, A. Yamamoto, Y . Yamamoto, Y . Uemoto, and Gota Kano, “ Solid phase growth technique for hogh cut-off frequency polysilicon TFT integrated circuits on a quartz substrate,” IEEE Trans. Electron Devices, vol. 37, pp. 1462, 1990. [16] M. K. Hatalis and D. W. Greve, “Large grain polycrystalline silicon by low-temperature annealing of low-pressure chemical vapor deposited amorphous silicon films,” J. Appl. Phys., vol. 63, no. 7, pp. 2260-2266, 1988. [17] S. Y . Yoon, K. Hyung, C. O. Kim, J. Y . Oh and J. Jang, “Low temperature metal induce crystallization of amorphous silicon using a Ni solution,” J. Appl. Phys., vol. 82, pp. 5865-5867, 1997. [18] G. Radnoczi, A. Robertsson, H. T. G.. Hentzell, S. F. Gong and M. A. Hasan, “Al induced crystallization of a-Si,” J. Appl. Phys., vol. 69, pp. 6394-6399, 1991. [19] Z. Jin, G. A. Bhat, M. Yeung, H. S. Kwok and M. Wong, “Nickel induced crystallization of amorphous silicon thin films,” J. Appl. Phys., vol. 84, pp.194-200, 1998. [20] S. W. Lee and S. K. Joo, “Low te mperature poly-Si thin-film transistor fabrication by metal-induced lateral crystallization,” IEEE Electron Device Lett., vol. 17, pp. 160-162, 1996. [21] H. Kim, J. G. Couillard and D. G. Ast, “Kinetic of silicide- induced crystallization of polycrystalline thin-film transistors fabricated from amorphous chemical-vapor deposition silicon,” Appl. Phys. Lett., vol. 72, pp. 803-805, 1998. [22] Z. Jin, H. S. Kwok and M. Wong, “Per formance of thin-film transistors with ultrathin Ni-NILC polycrystalline silicon channel layers,” IEEE Electron Device Lett., vol. 20, pp. 167-169, 1999. [23] G. K. Guist, and T. W. Sigmon, “High-performance laser-processed polysilicon thin-film transistors,” IEEE Electron Device Lett., vol. 20, no. 2, pp. 77-79, 1999. [24] N. Kudo, N. Kusumoto, T. Inushima, and S. Yamaza ki, “Characterization of polycrystalline-Si thin-film transistors fabricated by excimer laser annealing method,” IEEE Trans. Electron Devices, vol. 41, no. 10, pp. 1876-1879, 1994. [25] T. Sameshima, S. Usui and M. Sekiya, “XeCl excimer laser annealing used in the fabrication of poly-Si TFT’s,” IEEE Electron Device Lett., vol. 7, no. 5, pp. 276-278, 1986. [26] D. H. Choi, E. Sadauyki, O. Sugiura and M. Matsumra, “Excimer-laser crystallized poly-Si TFT’s with mobility more than 600 cm2/V.s,” IEEE Trans. Electron Devices, vol. 40, no. 11, pp. 2129, 1993. [27] K. Shimizu, O. Sugiur a and M. Matsumra, “High-mobility poly-Si thin-film transistors fabricated by a novel excimer laser crystallization method,” IEEE Trans. Electron Devices, vol. 40, no. 1, pp. 112-117, 1993. [28] H. Kuriyama et al., “Enlargement of poly-Si film grain size by excimer laser annealing and its application to high-performance poly-Si thin film transistor,” Jpn. J. Appl. Phys., vol. 30, pp. 3700-3703, 1991. [29] A. Yin, and S. J. Fonash, “High-pe rformance p-channel poly-Si TFT’s using electron cyclotron resonance hydrogen plasma passivation,” IEEE Electron Device lett., vol. 15, no. 12, pp. 502-503, 1994. [30] C. K. Yang, T. F. Lei, C. L. Lee, “The combined effects of low pressure NH 3 annealing and H2 plasma hydrogenation on polysilicon thin-film-transistors,” IEEE Electron Device lett., vol. 15, pp. 389-390, 1994. [31] J. W. Lee, N. I. Lee, J. I. Kan, C. H. Han, “Cha racteristics of polysilicon thin-film transistor with thin-gate dielectric grown by electron cyclotron resonance nitrous oxide plasma,” IEEE Electron Device lett., vol. 18, pp.172-174, 1997. [32] K. C. Moon, J. H. Lee, M. K. Han, “I mprovement of polycrystalline silicon thin film transistor using oxygen plasma pretreatment before laser crystallization,” IEEE Trans. Electron Devices, vol. 49, pp. 1319-1322, 2002. [33] T. Unagami and O. Kogure, “Large on /off current ratio and low leakage current poly-Si TFTs with multichannel structure,” IEEE Trans. Electron Devices, vol. 35, no. 11, pp. 1986-1989, 1988. [34] B. H. Min, C. M. Park and M. K. Han, “A novel offset gated polysilicon thin film transistor without an additional offset mask,” IEEE Electron Device lett., vol. 16, no. 5, pp. 161-163, 1995. [35] P. S. Shih, C. Y . Chang, T. C. Chang, T. Y . Huang, D. Z. Peng and C. F. Yeh, “A novel lightly doped drain polysilicon thin-film transistor with oxide sidewall spacer formed by one-step selective liquid phase deposition,” IEEE Electron Device lett., vol. 20, no. 8, pp. 421-423, 1999. [36] H. C. Lin, C.-M Yu, C.-Y. Lin, K.-L.Y eh, T. Y. Huang and T. F. Lei, “A novel thin-film transistor with self-aligned field induced drain,” IEEE Electron Device lett., vol. 22, no. 1, pp. 26-28, 2001. [37] N. Kimizuka, T. Yamamoto, T. Mogami, K. Yamaguchi, K. Imai, and T. Horiuchi, “Impact of bias temperature instability for direct-tunneling ultrathin gate oxide on MOSFET scaling,” in Dig. Tech, Papers—Symp. VLSI Technology, 1999, pp. 73–74. [38] S. Ogawa, M. Shimaya, and N. Shiono, “Interface-trap generation at ultrathin SiO –Si interfaces during negative-bias temperature aging,” J. Appl. Phys., vol. 77, pp. 1137–1148, 1995. [39] T. Yamamoto, K. Uwasawa, and T. Mogami, “Bias temperature instability in scaled p polysilicon gate p-MOSFETs,” IEEE Trans. Electron Devices, vol. 46, pp. 921–926, 1999. [40] S. Ogawa and N. Shiono, “Generalized diffusion-reaction model for the low-field charge-buildup instability at the Si–SiO interface,” Phys. Rev. B, Condens. Matter, vol. 51, pp. 4218–4230, 1995. [41] S. Zafar, A. Callegari, E. Gusev, and M. V. Fischetti, “Charge trapping related threshold voltage instabilities in high permittivity gate dielectric stacks,” J. Appl. Phys., vol. 93, pp. 9298–9303, 2003. [42] C. Shen, M. F. Li, X. P. Wang, H. Y. Yu, Y. P. Feng, A. T.-L. Lim, Y. C. Yeo, D. S. H. Chan, and D. L. Kwong, “Negative U traps in HfO gate dielectrics and frequency dependence of dynamic BTI in MOSFETs,” in IEDM Tech. Dig., Dec. 2004, pp. 733–736. [43] R. Choi, S. J. Rhee, J. C. Lee, B. H. Lee, and G. Bersuker, “Charge trapping and detrapping characteristics in hafnium silicate gate stack under static and dynamic stress,” IEEE Electron Device Lett., vol. 26, no. 3, pp. 197–199, Mar. 2005. [44] A. Shanware, M. R. Visokay, J. J. Chambers, A. L. P. Rorondaro, H. Bu, M. J. Bevan, R. Khamankar, S. Aur, P. E. Nicollian, J. McPherson, and L. Colombo, “Evaluation of the positive biased temperature stress stability in HfSiON gate dielectrics,” in Proc. IRPS, 2003, pp. 208–213. [45] K. Onishi, R. Choi, C. S. Kang, H. J. Cho, Y. H. Kim, R. E. Nieh, J. Han, S. A. Krishnan, M. S. Akbar, and J. C. Lee, “Bias-temperature instabilities of polysilicon gate HfO MOSFETs,” IEEE Trans. Electron Device, vol. 50, no. 6, pp. 1517–1524, Jun. 2003. [46] S. J. Rhee, Y. H. Kim, C. Y. Kang, C. S. Kang, H.-J. Cho, R. Choi, C. H. Choi, M. S. Akbar, and J. C. Lee, “Dynamic positive bias temperature instability characteristics of ultrathin HfO NMOSFET,” in Proc. IRPS, 2004, pp. 269–272. [47] S. J. Rhee, Y. H. Kim, C. Y. Kang, C. S. Kang, H.-J. Cho, R. Choi, C. H. Choi, M. S. Akbar, and J. C. Lee, “Dynamic positive bias temperature instability characteristics of ultrathin HfO NMOSFET,” in Proc. IRPS, 2004, pp. 269–272. [48] C. Hu, S. C. Tam, F. C. Hsu, P. K. Ko, T. Y. Chan, and K. W. Terrill, “Hot-electron-induced MOSFET degradation model, monitor, and improvement,” IEEE J. Solid-State Circuits, vol. SC-20, p. 295, 1985. [49] D. J. DiMaria and J. W. Stasiak, “Trap creation in silicon dioxide produced by hot electrons,” J. Appl. Phys., vol. 65, p. 2342, 1989. [50] P. Heremans, R. Bellens, G. Groeseneken, and H. E. Maes, “Consistent model for the hot-carrier degradation in n-channel and p-channel MOSFET’s,” IEEE Trans. Electron Devices, vol. 35, p. 2194, 1988. [51] F. Matsuoka, H. Iwai, H. Hayashida, K. Hama, Y. Toyoshima, and K. Maeguchi, “Analysis of hot-carrier-induced degradation mode on pMOSFET’s,” IEEE Trans. Electron Devices, vol. 37, p. 1487, 1990. [52] J. F. Zhang, S. Taylor, and W. Eccleston, “Electron trap generation in thermally grown SiO2 under Fowler–Nordheim stress,” J. Appl. Phys., vol. 71, p. 725, 1992. [53] B. E. Deal, M. Sklar, A. S. Grove, and E. H. Snow, “Characteristics of the surface-state charge (Qss) of thermally oxidized silicon,” J. Electrochem. Soc., vol. 114, p. 266, 1967. [54] D. J. Breed, “Non-ionic room temperature instabilities in MOS devices,” Solid-State Electron., vol. 17, p. 1229, 1974. [55] B. E. Deal, M. Sklar, A. S. Grove, and E. H. Snow, “Characteristics of the surface-state charge (Qss) of thermally oxidized silicon,” J. Electrochem. Soc., vol. 114, p. 266, 1967. [56] A. Goetzberger, A. D. Lopez, and R. J. Strain, “On the formation of surface states during stress aging of thermal Si-SiO2 interfaces,” J. Electrochem. Soc., vol. 120, p. 90, 1973. [57] D. J. Breed, “Non-ionic room temperature instabilities in MOS devices,” Solid-State Electron., vol. 17, p. 1229, 1974. [58] C. E. Blat, E. H. Nicollian, and E. H. Poindexter, “Mechanism of negative-bias-temperature instability,” J. Appl. Phys., vol. 69, p. 1712, 1991. [59] Zhang, J.F., Eccleston, W., “Positive bias temperature instability in MOSFETs,” IEEE Trans. Electron Devices, vol. 45, Issue 1, Jan. 1998 Page(s):116 - 124 [60] B. E. Deal, J. Electrochem. Soc. 121, 198C (1974) [61] A. Goetzberger, A. D. Lopez, and R. J. Strain, J. Electrochem. Soc. 120, 90 (1973) [62] N. Kimizuka, T. Yamamoto, T. Mogami, K. Yamaguchi, K. Imai, and T. Horiuchi, “The impact of bias temperature instability for direct-tunneling ultra-thin gate oxide on MOSFET scaling”, in Symp. VLSI Tech. Dig., pp.73-74, 1999. [63] S. Ogawa, M. Shimaya, and N. Shiono, “Interface trape generation at ultrathin SiO2(4-6nm) interfaces during negative-bias temperature aging”, J. Appl. Phys., vol.77, pp.1137-1148, 1995.
|