跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/10 02:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王統億
研究生(外文):Tong-Yi Wang
論文名稱:複晶矽薄膜電晶體製程效應與偏壓溫度不穩定性之研究
論文名稱(外文):Study on Process Effects and Bias Temperature Instability of Poly-Si Thin-Film Transistors
指導教授:雷添福
指導教授(外文):Tan-Fu Lei
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機學院微電子奈米科技產業專班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:87
中文關鍵詞:偏壓溫度不穩定性可靠度複晶矽薄膜電晶體
外文關鍵詞:bias temperature instabilityreliabilitypoly-Si TFTs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:440
  • 評分評分:
  • 下載下載:47
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,首先,我們在閘極氧化層沉積後利用高溫通氧的條件來提升閘極氧化層的可靠度。另外我們在成長薄膜電晶體通道之前,運用低溫低壓的條件預沉積一氧含量較高的薄膜矽襯墊層,因為較高的氧含量會抑制固相再結晶 (Solid-Phase Crystallization) 時的成核。藉由這個方式,可以在通道中形成更大的晶粒尺寸(Grain size) ,藉而得到更高的載子場效遷移率。我們發現,特別是在小尺寸的元件中,預沉積矽襯墊層有效的提高複晶矽薄膜電晶體 (poly-Si TFTs) 的場效遷移率、驅動電流,並有效降低閘極引發汲極漏電流 (GIDL current) 以及次臨限擺幅 (Subthreshold Swing)。再者藉由使用預沉積矽襯墊層,也改善了元件的可靠度以及均勻性。
接著,我們分別對p-通道複晶矽薄膜電晶體進行負偏壓溫度不穩定性 (Bias Temperature Instability) 之研究,以及對n-通道複晶矽薄膜電晶體進行正偏壓溫度不穩定性對於元件可靠度的影響之研究。我們分別探討不同的溫度以及所施加的偏壓,對於上述兩種偏壓溫度不穩定性在元件退化所造成的影響。實驗結果顯示,正、負偏壓溫度不穩定性在低溫複晶矽薄膜電晶體中會有著不同的退化機制,但對於元件可靠度都有很大程度的影響。
最後,我們探討動態負偏壓溫度不穩定性對於p-通道複晶矽薄膜電晶體可靠度的影響。藉由不同的偏壓方式,我們可以發現元件在進行負偏壓溫度不穩定性之測試時所產生的缺陷狀態,會在正閘極偏壓下被修補。在CMOS反向器使用中,這樣的修補會使得元件使用期限大幅提升,藉由使用動態負偏壓溫度不穩定性測試,可以得到更貼近現實使用下的元件使用期限。
In this thesis, first, we used a post-anneal procedure with oxygen ambient after the deposition of gate oxide. Poly-Si TFTs with such a post-anneal procedure have enhanced electrical characteristics and much improved reliability. In addition, we deposited a buffer amorphous Si (a-Si) layer under both low temperature and pressure before the deposition of the channel. Si layers grown under this condition would have higher oxygen concentration, and this would suppress the nucleation mechanism under solid-phase crystallization (SPC). With the buffer Si layer, the bi-layer Si, with a-Si layer beneath the poly-Si channel after the SPC process, would have larger grain size and lead to enhanced performance. Measurements revealed that the devices’ electrical characteristics are improved not only in field effect mobility and gate-induced-drain leakage (GIDL) current, but also in driving current and
subthreshold swing. Moreover, the ability of immunity against hot-carrier injection and device uniformity are improved.
Then, we studied the degradation mechanisms of negative bias temperature instablity (NBTI) and positive bias temperature instability (PBTI) in p- and n-channel low-temperature polycrystalline silicon thin-film transistors (LTPS TFTs), respectively. As the stress gate voltage increases, the absolute values of threshold voltages shift (|ΔVth|) increase under NBTI and PBTI stress. When the stress temperature is raised, the |ΔVth| increases under NBTI stress but almost unchanged under PBTI stress, indicating that the degradation mechanisms of NBTI and PBTI are different. Furthermore, the field-effect mobility is rarely changed under NBTI stress; however, it increases under PBTI stress. From the experimental results, we demonstrated that the NBTI degradation can be explained by the diffusion-controlled electrochemical reactions, while the PBTI degradation is caused by charge trapping in the gate dielectric.
Finally, we investigated the impact of dynamic NBTI in p-channel LTPS TFTs. In conventional NBTI studies, static gate bias is used to determine the lifetime of p-channel LTPS TFTs. However, DNBTI in p-MOSFETs showed that the lifetime was much longer than that derived from static NBTI stress because of the passivation effect. We found that LTPS p-TFTs have passivation effect under positive gate bias during a stress-passivation-stress process. As a result, we would underdetermine the true lifetime of LTPS p-TFTs when we use static NBTS to derive it. Therefore, it is necessary to use DNBTS to simulate the bias condition of their really applications.
Chapter 1 Introduction …………………………………………………………….1
1.1 Overview of Poly-Si Thin-Film Transistors ....………………………………...1
1.2 Overview of Bias Temperature Instability……………………………………..3
1.3 Motivation ……………….……………………………………………..……...5
1.4 Organization of the Thesis ……………………………………………………..6
References …………………………………………………………………………8
Chapter 2 Characteristics of Low Temperature Poly-Si TFTs Using a Bi-layer
Poly-Si Channel………...…………………………………………….16
2.1 Introduction …………………………….………………………………...…..16
2.2 Device Fabrication …...…..…………………...……………………………..17
2.3 Methods of Device Parameter Extraction ..………………………..…………18
2.3.1 Determination of Threshold Voltage ………………………...................18
2.3.2 Determination of Subthreshold-Swing .……………………………..….19
2.3.3 Determination of Field Effect Mobility ..…………………………….....20
2.3.4 Determination of ON/OFF Current Ratio .…………………….….…....20
2.3.5 Extraction of Grain Boundary Trap State Density..…………….……....21
2.4 Results and discussion ………………………………………………………..23
2.4.1 Characteristics of Poly-Si TFTs with post anneal after gate oxide deposition………………………………….. ……………...……..…..23
2.4.2 Characteristics of Poly-Si TFTs with Bi-layer Poly-Si Channel...……..24
2.4.3 Reliability of Poly-Si TFTs with Bi-layer Poly-Si Channel…...……….25
2.5 Summary …………………………………………………….…………….…25
References ………………………..………………………………………………27
Chapter 3 Degradation Mechanisms of NBTI and PBTI in Low-Temperature Poly-Si Thin-Film Transistors ………………………………………44
3.1 Introduction …………………………………………………………………..44
3.2 Experimental …………………………………………………..……………..45
3.3 Results and Discussion ……………………………………………………….46
3.4 Summary ………………………………………………...…………………...48
References …………….………………………………………………………….49
Chapter 4 Dynamic Negative Bias Temperature Instability of Low-Temperature Poly-Silicon Thin-Film Transistors .....…..…......67
4.1 Introduction ………………………….……………………………………….67
4.2 Experimental …...……………………………………………….……………68
4.3 Results and Discussion ……………………………………………………….69
4.4 Summary ...…………………………………………………………………...70
References ……..…………………………………………………………………72
Chapter 5 Conclusions …………………….…….………………….…………….85
[1] Y. Oana, “Current and future technology of low-temperature poly-Si TFT-LCDs,” Journal of the SID, vol. 9, pp. 169-172, 2001.
[2] S. Morozumi, K. Oguchi, S. Yazawa, Y. Kodaira, H. Ohshima, and T. Mano, “B/W and color LC video display addressed by poly-Si TFTs,” SID Dig., pp.156, 1983.
[3] R. E. Proano, R. S. Misage, D. Jones, and D. G. Ast, “Guest-host active matrix liquid-crystal display using high-voltage polysilicon thin film transistors,” IEEE Trans. Electron Devices, vol. 38, pp. 1781, 1991.
[4] S. Batra, “Development of drain-offset (DO) TFT technology for high density SRAM’s,” Extended Abstracts, vol.94-2, in Electrochemical Soc. Fall Mtg., Miami Beach, FL, Oct. pp. 677,1994.
[5] N. D. Young, G. Harkin, R. M. Bunn, D. J. McCulloch, and I. D. French, “The fabrication and characterization of EEPROM arrays on glass using a low temperature poly-Si TFT process,” IEEE Trans. Electron Devices, vol. 43, pp. 1930-1936, 1996.
[6] M. Cao, et al., “A simple EEPROM cell using twin polysilicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 15, pp. 304, 1994.
[7] T. Kaneko, Y . Hosokawa, M. Tadauchi, Y . Kita and H. Andoh, “400 dpi integrated contact type linear image sensors with poly-Si TFT’s analog readout circuits and dynamic shift registers,” IEEE Trans. Electron Devices, vol. 38, no. 5 pp. 1086-1096, 1991.
[8] N. Yamauchi, Y . Inada and M. Okamur a, “An intergated photodetector-amplifier using a-Si p-i-n photodiodes and poly-Si thin-film transistors,” IEEE Photonic Tech. Lett., vol. 5, pp. 319, 1993.
[9] K. Banerjee, S. J. Souri, P. Kapur, and K. C. Saraswat, “3-D ICs: a novel chip design for improving deep-submicrometer interconnect performance and
system-on-chip integration,” Proceedings of the IEEE, vol.89, pp. 602-633, 2001.
[10] C. H. Fa, and T. T. Jew, “The polysilicon insulated-gate field-effect transistor,” IEEE Trans. Electron Devices, vol. 13, no. 2, pp. 290, 1966.
[11] W. G. Hawkins, “Polycrystalline -silicon device technology for large-area electronics,” IEEE Trans. Electron Devices, vol. 33, pp. 477-481, 1986.
[12] I. -W. Wu, “Cell design considerations for high-aperture-ratio direct-view and projection polysilicon TFT-LCDs,” in SID Tech. Dig., pp. 19, 1995.
[13] A. Nakamura, F. Emoto, E. Fujii and A. Tamamoto, “A high-reliability, low-operation-voltage monolithic active-matrix LCD by using advanced solid-phase growth technique,” in IEDM Tech. Dig., pp.847, 1990.
[14] R. B. Iverson and R. Reif, “Recrys tallization of amorphized polycrystalline silicon films on SiO2: temperature dependence of the crystallization parameters,” J. Appl. Phys., vol. 62, no. 5, pp. 1675-1681, 1987.
[15] F. Emoto, K. Senda, E. Fujii, A. Nakamura, A. Yamamoto, Y . Yamamoto, Y . Uemoto, and Gota Kano, “ Solid phase growth technique for hogh cut-off frequency polysilicon TFT integrated circuits on a quartz substrate,” IEEE Trans. Electron Devices, vol. 37, pp. 1462, 1990.
[16] M. K. Hatalis and D. W. Greve, “Large grain polycrystalline silicon by low-temperature annealing of low-pressure chemical vapor deposited amorphous silicon films,” J. Appl. Phys., vol. 63, no. 7, pp. 2260-2266, 1988.
[17] S. Y . Yoon, K. Hyung, C. O. Kim, J. Y . Oh and J. Jang, “Low temperature metal induce crystallization of amorphous silicon using a Ni solution,” J. Appl. Phys., vol. 82, pp. 5865-5867, 1997.
[18] G. Radnoczi, A. Robertsson, H. T. G.. Hentzell, S. F. Gong and M. A. Hasan, “Al induced crystallization of a-Si,” J. Appl. Phys., vol. 69, pp. 6394-6399, 1991.
[19] Z. Jin, G. A. Bhat, M. Yeung, H. S. Kwok and M. Wong, “Nickel induced
crystallization of amorphous silicon thin films,” J. Appl. Phys., vol. 84, pp.194-200, 1998.
[20] S. W. Lee and S. K. Joo, “Low te mperature poly-Si thin-film transistor fabrication by metal-induced lateral crystallization,” IEEE Electron Device Lett., vol. 17, pp. 160-162, 1996.
[21] H. Kim, J. G. Couillard and D. G. Ast, “Kinetic of silicide- induced crystallization of polycrystalline thin-film transistors fabricated from amorphous chemical-vapor deposition silicon,” Appl. Phys. Lett., vol. 72, pp. 803-805, 1998.
[22] Z. Jin, H. S. Kwok and M. Wong, “Per formance of thin-film transistors with ultrathin Ni-NILC polycrystalline silicon channel layers,” IEEE Electron Device Lett., vol. 20, pp. 167-169, 1999.
[23] G. K. Guist, and T. W. Sigmon, “High-performance laser-processed polysilicon thin-film transistors,” IEEE Electron Device Lett., vol. 20, no. 2, pp. 77-79, 1999.
[24] N. Kudo, N. Kusumoto, T. Inushima, and S. Yamaza ki, “Characterization of polycrystalline-Si thin-film transistors fabricated by excimer laser annealing method,” IEEE Trans. Electron Devices, vol. 41, no. 10, pp. 1876-1879, 1994.
[25] T. Sameshima, S. Usui and M. Sekiya, “XeCl excimer laser annealing used in the fabrication of poly-Si TFT’s,” IEEE Electron Device Lett., vol. 7, no. 5, pp. 276-278, 1986.
[26] D. H. Choi, E. Sadauyki, O. Sugiura and M. Matsumra, “Excimer-laser crystallized poly-Si TFT’s with mobility more than 600 cm2/V.s,” IEEE Trans. Electron Devices, vol. 40, no. 11, pp. 2129, 1993.
[27] K. Shimizu, O. Sugiur a and M. Matsumra, “High-mobility poly-Si thin-film transistors fabricated by a novel excimer laser crystallization method,” IEEE
Trans. Electron Devices, vol. 40, no. 1, pp. 112-117, 1993.
[28] H. Kuriyama et al., “Enlargement of poly-Si film grain size by excimer laser annealing and its application to high-performance poly-Si thin film transistor,” Jpn. J. Appl. Phys., vol. 30, pp. 3700-3703, 1991.
[29] A. Yin, and S. J. Fonash, “High-pe rformance p-channel poly-Si TFT’s using electron cyclotron resonance hydrogen plasma passivation,” IEEE Electron Device lett., vol. 15, no. 12, pp. 502-503, 1994.
[30] C. K. Yang, T. F. Lei, C. L. Lee, “The combined effects of low pressure NH 3 annealing and H2 plasma hydrogenation on polysilicon thin-film-transistors,” IEEE Electron Device lett., vol. 15, pp. 389-390, 1994.
[31] J. W. Lee, N. I. Lee, J. I. Kan, C. H. Han, “Cha racteristics of polysilicon thin-film transistor with thin-gate dielectric grown by electron cyclotron resonance nitrous oxide plasma,” IEEE Electron Device lett., vol. 18, pp.172-174, 1997.
[32] K. C. Moon, J. H. Lee, M. K. Han, “I mprovement of polycrystalline silicon thin film transistor using oxygen plasma pretreatment before laser crystallization,” IEEE Trans. Electron Devices, vol. 49, pp. 1319-1322, 2002.
[33] T. Unagami and O. Kogure, “Large on /off current ratio and low leakage current poly-Si TFTs with multichannel structure,” IEEE Trans. Electron Devices, vol. 35, no. 11, pp. 1986-1989, 1988.
[34] B. H. Min, C. M. Park and M. K. Han, “A novel offset gated polysilicon thin film transistor without an additional offset mask,” IEEE Electron Device lett., vol. 16, no. 5, pp. 161-163, 1995.
[35] P. S. Shih, C. Y . Chang, T. C. Chang, T. Y . Huang, D. Z. Peng and C. F. Yeh, “A novel lightly doped drain polysilicon thin-film transistor with oxide sidewall spacer formed by one-step selective liquid phase deposition,” IEEE Electron
Device lett., vol. 20, no. 8, pp. 421-423, 1999.
[36] H. C. Lin, C.-M Yu, C.-Y. Lin, K.-L.Y eh, T. Y. Huang and T. F. Lei, “A novel thin-film transistor with self-aligned field induced drain,” IEEE Electron Device lett., vol. 22, no. 1, pp. 26-28, 2001.
[37] N. Kimizuka, T. Yamamoto, T. Mogami, K. Yamaguchi, K. Imai, and T. Horiuchi, “Impact of bias temperature instability for direct-tunneling ultrathin gate oxide on MOSFET scaling,” in Dig. Tech, Papers—Symp. VLSI Technology, 1999, pp. 73–74.
[38] S. Ogawa, M. Shimaya, and N. Shiono, “Interface-trap generation at ultrathin SiO –Si interfaces during negative-bias temperature aging,” J. Appl. Phys., vol. 77, pp. 1137–1148, 1995.
[39] T. Yamamoto, K. Uwasawa, and T. Mogami, “Bias temperature instability in scaled p polysilicon gate p-MOSFETs,” IEEE Trans. Electron Devices, vol. 46, pp. 921–926, 1999.
[40] S. Ogawa and N. Shiono, “Generalized diffusion-reaction model for the low-field charge-buildup instability at the Si–SiO interface,” Phys. Rev. B, Condens. Matter, vol. 51, pp. 4218–4230, 1995.
[41] S. Zafar, A. Callegari, E. Gusev, and M. V. Fischetti, “Charge trapping related threshold voltage instabilities in high permittivity gate dielectric stacks,” J. Appl. Phys., vol. 93, pp. 9298–9303, 2003.
[42] C. Shen, M. F. Li, X. P. Wang, H. Y. Yu, Y. P. Feng, A. T.-L. Lim, Y. C. Yeo, D. S. H. Chan, and D. L. Kwong, “Negative U traps in HfO gate dielectrics and frequency dependence of dynamic BTI in MOSFETs,” in IEDM Tech. Dig., Dec. 2004, pp. 733–736.
[43] R. Choi, S. J. Rhee, J. C. Lee, B. H. Lee, and G. Bersuker, “Charge trapping and detrapping characteristics in hafnium silicate gate stack under static and
dynamic stress,” IEEE Electron Device Lett., vol. 26, no. 3, pp. 197–199, Mar. 2005.
[44] A. Shanware, M. R. Visokay, J. J. Chambers, A. L. P. Rorondaro, H. Bu, M. J. Bevan, R. Khamankar, S. Aur, P. E. Nicollian, J. McPherson, and L. Colombo, “Evaluation of the positive biased temperature stress stability in HfSiON gate dielectrics,” in Proc. IRPS, 2003, pp. 208–213.
[45] K. Onishi, R. Choi, C. S. Kang, H. J. Cho, Y. H. Kim, R. E. Nieh, J. Han, S. A. Krishnan, M. S. Akbar, and J. C. Lee, “Bias-temperature instabilities of polysilicon gate HfO MOSFETs,” IEEE Trans. Electron Device, vol. 50, no. 6, pp. 1517–1524, Jun. 2003.
[46] S. J. Rhee, Y. H. Kim, C. Y. Kang, C. S. Kang, H.-J. Cho, R. Choi, C. H. Choi, M. S. Akbar, and J. C. Lee, “Dynamic positive bias temperature instability characteristics of ultrathin HfO NMOSFET,” in Proc. IRPS, 2004, pp. 269–272.
[47] S. J. Rhee, Y. H. Kim, C. Y. Kang, C. S. Kang, H.-J. Cho, R. Choi, C. H. Choi, M. S. Akbar, and J. C. Lee, “Dynamic positive bias temperature instability characteristics of ultrathin HfO NMOSFET,” in Proc. IRPS, 2004, pp. 269–272.
[48] C. Hu, S. C. Tam, F. C. Hsu, P. K. Ko, T. Y. Chan, and K. W. Terrill, “Hot-electron-induced MOSFET degradation model, monitor, and improvement,” IEEE J. Solid-State Circuits, vol. SC-20, p. 295, 1985.
[49] D. J. DiMaria and J. W. Stasiak, “Trap creation in silicon dioxide produced by hot electrons,” J. Appl. Phys., vol. 65, p. 2342, 1989.
[50] P. Heremans, R. Bellens, G. Groeseneken, and H. E. Maes, “Consistent model for the hot-carrier degradation in n-channel and p-channel MOSFET’s,” IEEE Trans. Electron Devices, vol. 35, p. 2194, 1988.
[51] F. Matsuoka, H. Iwai, H. Hayashida, K. Hama, Y. Toyoshima, and K. Maeguchi, “Analysis of hot-carrier-induced degradation mode on pMOSFET’s,” IEEE
Trans. Electron Devices, vol. 37, p. 1487, 1990.
[52] J. F. Zhang, S. Taylor, and W. Eccleston, “Electron trap generation in thermally grown SiO2 under Fowler–Nordheim stress,” J. Appl. Phys., vol. 71, p. 725, 1992.
[53] B. E. Deal, M. Sklar, A. S. Grove, and E. H. Snow, “Characteristics of the surface-state charge (Qss) of thermally oxidized silicon,” J. Electrochem. Soc., vol. 114, p. 266, 1967.
[54] D. J. Breed, “Non-ionic room temperature instabilities in MOS devices,” Solid-State Electron., vol. 17, p. 1229, 1974.
[55] B. E. Deal, M. Sklar, A. S. Grove, and E. H. Snow, “Characteristics of the surface-state charge (Qss) of thermally oxidized silicon,” J. Electrochem. Soc., vol. 114, p. 266, 1967.
[56] A. Goetzberger, A. D. Lopez, and R. J. Strain, “On the formation of surface states during stress aging of thermal Si-SiO2 interfaces,” J. Electrochem. Soc., vol. 120, p. 90, 1973.
[57] D. J. Breed, “Non-ionic room temperature instabilities in MOS devices,” Solid-State Electron., vol. 17, p. 1229, 1974.
[58] C. E. Blat, E. H. Nicollian, and E. H. Poindexter, “Mechanism of negative-bias-temperature instability,” J. Appl. Phys., vol. 69, p. 1712, 1991.
[59] Zhang, J.F., Eccleston, W., “Positive bias temperature instability in MOSFETs,” IEEE Trans. Electron Devices, vol. 45, Issue 1, Jan. 1998 Page(s):116 - 124
[60] B. E. Deal, J. Electrochem. Soc. 121, 198C (1974)
[61] A. Goetzberger, A. D. Lopez, and R. J. Strain, J. Electrochem. Soc. 120, 90 (1973)
[62] N. Kimizuka, T. Yamamoto, T. Mogami, K. Yamaguchi, K. Imai, and T. Horiuchi, “The impact of bias temperature instability for direct-tunneling
ultra-thin gate oxide on MOSFET scaling”, in Symp. VLSI Tech. Dig., pp.73-74, 1999.
[63] S. Ogawa, M. Shimaya, and N. Shiono, “Interface trape generation at ultrathin SiO2(4-6nm) interfaces during negative-bias temperature aging”, J. Appl. Phys., vol.77, pp.1137-1148, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 3. 李憲佐、吳翠鳳、沈麗玉,<公平交易法第十九條規範之檢討-以「有限制競爭或妨礙公平競爭之虞」為中心->,公平交易季刊,第10卷第2期,2002年4月。
2. 4. 何之邁,<贈品之研究>,政大法學評論,第53期,1995年6月。
3. 5. 余適霖,<論企業贈品贈獎促銷行為於公平交易法上之法概念>,法律評論,第63卷第10-12期合刊,1997年12月
4. 6. 林廷機,<公平法有關不公平競爭行為,應如何適用「合理原則」或「當然違法」原則>,輔仁法學第17期,1998年6月。
5. 7. 陳銘煌,<日本競爭法對事業贈品贈獎行為之規範研究>,公平交易季刊,第4卷第4期,1996年10月。
6. 8. 梁宇賢,<論美國聯邦托拉斯法規中之休曼法>,中興法商學報,第11期,1975年9月。
7. 9. 黃銘傑,<國民中小學教科書、參考書市場競爭行為與公平交易法>,公平交易季刊,第13卷第3期,2005年7月。
8. 10. 張維中,<美國微軟案作業系統軟體搭售問題之研究>,公平交易季刊,第14卷第2期,2006年4月。
9. 11. 廖義男,<公平交易法修正之重點及理由>,公平交易季刊,第1卷第4期,1993年10月。
10. 12. 廖元豪,<美國聯邦交易委員會法第五條與其他反托拉斯法之關係-兼論我國公平交易法第二十四條之適用範圍>,公平交易季刊,第8卷第4期,2000年10月。
11. 13. 鄭家麟,<我國相關法規對贈品贈獎促銷行為之規範-兼論行政院公平交易委員會處理贈品贈獎促銷額度案件原則>,公平交易季刊,第9卷第1期,2001年1月
12. 14. 劉孔中,<美國聯邦交易委員會法第五條之研究>,人文及社會科學集刊,第7卷第1期,1995年3月。