跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/14 02:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃一桀
研究生(外文):Yi-Chieh Huang
論文名稱:新穎的SONOS儲存單元製程之研究
論文名稱(外文):A Study of Novel SONOS Cell Storage Process
指導教授:羅正忠羅正忠引用關係
指導教授(外文):Jen-Chung Lou
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機學院微電子奈米科技產業專班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:51
中文關鍵詞:快閃記憶體含氮氧化層SONOS
外文關鍵詞:flash memoryoxynitrideSONOS
相關次數:
  • 被引用被引用:1
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在非揮發性記憶體的發展與研究過程中,矽-氧化矽-氮化矽-氧化矽-矽(Silicon-Oxide-Nitride-Oxide-Silicon,SONOS)記憶體元件具有許多優點備受矚目。然而隨著尺寸的微縮以及為了維持良好的儲存能力,各種材料及結構也被使用在SONOS結構裡用以改善可靠度的相關問題。
本篇論文提出一種新穎的SONOS儲存單元製造之方法。首先,我們在試片上成長一層薄的化學氧化層(chemical oxide);接著使用LPCVD通入NH3氮化化學氧化層,然後沈積氮化矽層;之後使用爐管通入O2對氮化矽層進行再氧化。優點在於LPCVD可同時氮化化學氧化層以及沈積氮化矽;而再氧化過程中,可趕走氮化穿遂氧化層所產生的氫,使得穿遂氧化層表面形成具高氮濃度的氮氧化層,同時使得氮化矽層形成具漸變式梯形能帶的結構。另外探討不同再氧化時間對於可靠度特性的影響。研究結果發現,經過再氧化處理之後,在適當的條件下,確實能有效增大記憶體操作窗口,並且減緩寫入、抹除等操作所造成性能退化的速率。
Nowadays, SONOS (Silicon-Oxide-Nitride-Oxide-Silicon) memory device becomes popular because of its simplicity and scalable in structure by comparing with conventional floating gate flash memory.
In this thesis, we proposed a novel process to fabricate a SONOS capacitor. This process mainly included four process stages – chemical oxide growth, nitridation, forming the Si3N4 and subsequent furnace O2 reoxidation. By this process, the oxynitride as tunnel dielectric and a tapered bandgap nitride are obtained.
It is found that the structure formed by this novel process exhibits improved cycling endurance and charge-trapping efficiency. The result of the experiment can provide a very promising solution for future flash memory design.
Abstract (Chinese) …………………………………………i
Abstract (English) …………………………………………ii
Acknowledgment (Chinese) …………………………………iii
Contents ………………………………………………………iv

Chapter.1 Introduction of Non-Volatile Memory
1.1 General Background ………………………………………1
1.2 Motivation …………………………………………………3
1.3 Organization of This Thesis……………………………4

Chapter.2 Basic principles of SONOS memory
2.1 Introduction ………………………………………………8
2.2 Operation Mode ……………………………………………8
2.3 Reliability ………………………………………………10
2.4 Summary ……………………………………………………12

Chapter.3 Experimental Process and discussion of results
3.1 Introduction………………………………………………17
3.2 Experimental Process……………………………………18
3.3 Discussion of Results …………………………………20
3.4 Summary ……………………………………………………23

Chapter.4 Conclusion and suggestion of future work
4.1 Conclusion…………………………………………………45
4.2 Suggestion of Future Work ……………………………45

References………………………………………………………47
Vita………………………………………………………………51
[1.1] D. Kahng, and S. M. Sze, “A floating gate and its application to memory devices,” Bell Syst. Tech, J., 46, 1288 (1967).
[1.2] J. D. Blauwe, “Nanocrystal nonvolatile memory devices”, IEEE Transaction on Nanotechnology, 1, 72 (2002).
[1.3] H. E. Maes, J. Witters, and G. Groeseneken, Proc. 17 European Solid State Devices Res. Conf. Bologna 1987, 157 (1988).
[1.4] M. H. White, Y. Yang, A. Purwar, and M. L. French, ”A low voltage SONOS nonvolatile semiconductor memory technology,” IEEE Int’l Nonvolatile Memory Technology Conference, 52 (1996).
[1.5] M. H. White, D. A. Adams, and J. Bu, “On the go with SONOS,” IEEE circuits & devices, 16, 22 (2000).
[1.6] W. D. Brown and J. E. Brewer, “Nonvolatile Semiconductor Memory Technology,” IEEE press New York, p. 309, 1998.
[1.7] T. Noraki, T. Tanaka, Y. Kijiya, E. Kinoshita, and T. Tsuchiya. “A 1 Mbit EEPROM with MONOS Memory Cell for Semiconductor Disk Application,” IEEE Journal of Solid-State Circuits, 26(4):497-501, April 1991.
[1.8] F.R.Libsch, A. Roy, and M.H. White. “A True 5V EEPROM Cell for High Density NVSM,” IEEE Pansactions on Electron Devices, 34(11):2372, 1987. 45th Annual Device Research Conference (IEEE) Santa Barbara, CA, June 1987.
[1.9] Xu D, Kapoor VJ. “Effects of oxygen content and oxide layer thickness on interface state densities for metal–oxynitride–oxide–silicon devices,” J Appl Phys 1991;70(3).
[1.10] Kamagaki Y, Minami S, Kato H. “A new portrayal of electron and hole traps in amorphous silicon nitride,” J Appl Phys 1990;68:2211.
[1.11] Kuo-Hong Wu, Hua-Ching Chien, Chih-Chiang Chan, Tung-Sheng Chen, and Chin-Hsing Kao, “SONOS Device With Tapered Bandgap Nitride Layer,” IEEE Trans. Electron Devices, vol. 52, 2005.
[2.1] J. Bu and M. H. White. Aerospace Conference Proceedings, 2002. IEEE , Vol. 5 , pp. 2383, 2002.
[2.2] Bez, R., Camerlenghi, E., Modelli, A., and Visconti, A., “Introduction to flash memory,” Proc. IEEE, 2003, 91, pp. 489–5028.
[2.3] J. R. Yeargan, and H. L. Taylor, “The Poole-Frenkel Effect with Compensation Present,” Journal of Applied Physics, vol.39, 1968, pp.5600.
[2.4]P. Cappelletti, R. Bez, D. Cantarelli, and L. Fratin, “Failure mechanisms of Flash cell in program/erase cycling,” IEDM Tech. Dig., 1994, pp. 291–294.
[2.5] Yakov Roizin, Micha Gutman, Efraim Aloni, Victor Kairys, Pavel Zisman, “Retention Characteristic of micro FLASH Memory (Activation Energy of Traps in the ONO stack)”.
[2.6] W. J. Tsai, S. H. Gu, N. K. Zous, C. C. Yeh, C. C. Liu, C. H. Chen, Tahui Wang, Sam Pan and Chih-Yuan Lu, “Cause of Data Retention Loss in a Nitride-Based Localized Trapping Storage Flash Memory Cell,” IEEE 40th Annual International Reliability Physics Symposium, 2002, pp. 34~38.
[3.1] S. Aritome, R. Shirota, G. Hemink, T. Endoh and F. Masuoka, “Reliability Issues of Flash Memory Cells,” Proceedings of IEEE, Vol. 81, 1993, pp. 776-787.
[3.2] K. Naruke, S. Taguchi and M. Wada, “Stress Induced Leakage Current Limiting to Scale Down EEPROM Tunnel Oxide Thickness,” IEEE IEDM Tech. Dig., 1988, pp. 389-392.
[3.3] U. Sharma, R. Moazzami, P. Tobin, Y. Okada, S. K. Cheng and J. Yeargain, “Vertically Scaled, High Reliability EEPROM Devices with Ultra-thin Oxynitride Films Prepared by RTP in N20/02 Ambient,” IEEE IEDM, Tech. Dig., 1992, pp. 461-464.
[3.4] H. Fukuda, M. Yasuda, T. Iwabuchi and S. Ohno, “Novel N2O-Oxynitridation Technology for Forming Highly Reliable EEPROM Tunnel Oxide Films,” IEEE Electron Device Lett., Vol. 12, 1991, pp. 587-589.
[3.5] B. C. Lin, K. M. Chang, C. H. Lai, K.Y. Hsieh and J. M. Yao, “Reoxidation Behavior of High-Nitrogen Oxynitride Films after O2 and N2O Treatment,” Jpn. J. Appl. Phys., vol. 44, pp.2993-2994, 2005.
[3.6] Kuo-Hong Wu, Hua-Ching Chien, Chih-Chiang Chan, Tung-Sheng Chen, and Chin-Hsing Kao, “SONOS Device With Tapered Bandgap Nitride Layer,” IEEE Trans. Electron Devices, vol. 52, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top