跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/05 20:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李佳恬
研究生(外文):Chia-Tien Lee
論文名稱:利用奈米粒子提升Pi-Cells轉態速度之研究
論文名稱(外文):Nanostructure Effect on Transition in Pi-cells
指導教授:陳皇銘
指導教授(外文):Huang-Ming Philip Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:顯示科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:45
中文關鍵詞:奈米結構光學補償彎曲型液晶顯示器成核現象轉變時間
外文關鍵詞:pi-cellnanostructureoptically compensated bend mode liquid crystal displayOCB Mode LCDnucleationtransition time
相關次數:
  • 被引用被引用:0
  • 點閱點閱:234
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,平面顯示器產業技術(LCD、OLED、PDP、FED等)已趨成熟,在市場蓬勃發展的帶動之下,很多公司及研究單位紛紛投入下一世代顯示器的開發。然而在大尺寸應用上,動態表現因受限於扭轉型液晶較慢的反應速度,無法提升影像品質。因此具有快速應答速度的光學補償彎曲型液晶模式顯示器則備受矚目。
然而,光學補償彎曲型液晶顯示器受限於其在操作前需要一段較長時間的熱機時間使得液晶分子能由斜展態轉換到真正進行操作的彎曲態。針對這項缺點,目前已有許多研究探討過這個問題,但目前的改善方式依然會犧牲掉光學特性。因此,本篇論文使用奈米結構來形成轉態核心,進而可以加快轉態速度。而因為尺寸為奈米等級,也不會造成光學特性的損失。
The pi-cells are nematic liquid crystal devices in which the molecular director bends symmetrically by 180° through the cell. It has attracted much interest due to their fast response time and wide-viewing-angle characteristics. It is well known that the operating state (bend state) of a pi-cell must be nucleated then uniformly spread the bend orientation in splay state before operation. In this study, the random distribution of silicon oxide nano-particles was investigated for decreasing the time of splay-to-bend transition in pi-cells. Under the optimum conditions, the 50% reduction of splay-to-bend transition time was found in nanostructure structure treated surfaces.
Chapter 1 Introduction
1.1 Introduction of Liquid Crystal 1
1.2 Liquid Crystal Phase 1
1.3 Liquid Crystal Display (LCDs) Technology 3
1.4 PI-Cell and Optical Compensated Bend Mode (OCB) 5
1.5 Motivation and Objective 5
1.6 Organization of This Thesis 5

Chapter 2 Overview of Pi-Cells
2.1 Introduction 7
2.2 Characteristics of Pi-Cells 7
2.3 Nucleation 10
2.4 Preliminary Study of Nucleation 13
2.5 Summary 16

Chapter 3 Measurement Systems
3.1 Introduction 17
3.2 Atomic Force Microscope (AFM) 17
3.3 Cell Gap Measurement System 20
3.4 Polarizing Optical Microscope (POM) 23
3.5 Laser Optics System 24

Chapter 4 Experimental Results and Discussion
4.1 Introduction 26
4.2 Cell Fabrication Process 26
4.3 Observation of Surfaces 29
4.4 Improvement of Transition Time 34
4.5 Influence of Protrusions Distribution Density 35
4.6 Measurement of Electro-Optical Properties 37
4.7 Summary 41

Chapter 5 Conclusions
5.1 Conclusions 42
5.2 Future work 42

References 44
[1] F. Reinizer, Monatsh. Chem., Vol. 9, p. 421 (1888)
[2] O. Lehmann, Z. Physik. Chem., Vol. 4, p. 462 (1889)
[3] K. Takatoh, M. Hasegawa, M. Koden, N. Itoh, R. Hasegawa, M. Sakamoto, Alignment technologies and applications of liquid crystal devices, Taylor & Francis (2005)
[4] P. J. Bos, K.R. Koehler/Beran, Mol. Cryst. Liq. Cryst., Vol. 113, p. 329 (1984).
[5] Y. Yamaguchi, T. Miyashita, T. Uchida, SID, 19-04, p. 277 (1993).
[6] E. J. Acosta, M. J. Towler and H. G. Walton, Liq. Cryst., Vol. 27, p. 977 (2000).
[7] P. D. Brimicombe and E. P. Raynes, Liq. Cryst., Vol. 32, p. 1273 (2005).
[8] P. D. Brimicombe and E. P. Raynes, Appl. Phys. Lett., Vol. 89, p. 031121 (2006).
[9] D. W. Berreman, J. Appl. Phys., Vol. 46, p. 3746 (1975)
[10] C. Z. Van Doorn, J. Appl. Phys., Vol. 46, p. 3738 (1975).
[11] F. M. Leslie, Arch. Ration. Mech. Anal., Vol. 28, p. 265 (1968).
[12] S. Onda, T. Miyashita and T. Uchida, Asia Display, 33-4 (1998).
[13] H. G. Walton and M. J. Towler, Liq. Cryst., Vol. 27, p. 1329 (2000)
[14] N. Nagae, T. Miyashita, T.Uchida, Y. Yamada and Y. Ishii, SID, p.26 (2000).
[15] H. Nakamura and M. Noguchi, Jpn. J. Appl. Phys., Vol. 39, P. 6368 (2000).
[16] Y. Zhang, B. Wang, D. B. Chung, J. Colegrove and P. J. Bos, SID, 62.5L, p. 1782 (2005).
[17] J. Cheng, R. N. Thurston and D. W. Berreman, J. Appl. Phys., Vol. 52(4), p. 2756 (1981).
[18] J. Cheng and R. N. Thurston, J. Appl. Phys., Vol. 52(4), p. 2766 (1981).
[19] S.H. Lee, S.H. Homg, J.D. Noh, H.Y. Kim and D.S. Seo, Jpn. J. Appl. Phys., Vol. 40, p. L389 (2001).
[20] I. Inoue, T. Miyashita, T. Uchida, Y. Yamada and Y. Ishii, EuroDisplay, p. 10-2 (2002).
[21] T. Satake and T. Kurata, ASID Dig., p. 12-6 (2004)
[22] T. Uchida, Y. Kimura, S. Kuniaki, H. Nakamura and Y. Taira, patent JP 9 185 037 (1995)
[23] C. Lee, H. Chang, J. Lyu, K. Kim and J. Souk, SID Dig., p-93. (2002)
[24] N. Koma, T. Miyashita, K. Yoneda and T. Uchida, SID, p. 5.2 (1999)
[25] M. Xu, D.-K. Yang. P. J. Bos, X. Jin, F. W. Harris and S. Z. D. Cheng, SID, 11.4L, p. 139 (1998)
[26] X.-D. Mi, M. Xu, D.-K. Yang and P. J. Bos, SID, 5.1, p. 24 (1999)
[27] F. s. Yeung, Y. W. Li and H.-S. Kwok, Appl. Phys. Lett., Vol. 88, p. 041108 (2006)
[28] F. S.-Y. Yeung, F.-C. Xie, H.-S. Kwok, J. Wau, O. Tsui, and P. Sheng, SID, 23.2, p.1080 (2005)
[29] F. S.-Y. Yeung and H.-S. Kwok, Appl. Phys. Lett., Vol. 88, p. 063505 (2006)
[30] S.H. Lee, T.J. Kim, G.D. Lee, T.H. Yoon, J.C. Kim, Jpn. J. Appl. Phys., Vol. 42, p. L1148 (2001).
[31] E. Acosta, B. Henley, D. Kean, M. Tillin, C. Tombling, M. Towler, E. Walton, H. Walton and R. Winlow, Liq. Cryst., Vol. 31, p.1619 (2004)
[32] C.G. Jhun, J. L. Lee, S. H. Kang, S. L. Lee, J. C. Kim, T.-H. Yoon, J. D. Noh, D. H. Suh and J. Y. Lee, IDW, LCTp1-5, p. 117 (2004)
[33] H. Kikuchi, H. Yamamoto, H. Sato, M. Kawakita, K. Takizawa and H. Fujikake, Jpn. J. Appl. Phys., Vol. 44, p. 981 (2005)
[34] M. D. Tillin, E. P. Raynes and M. J. Towler, US Patent, US 6222605 (2001)
[35] F. Bruyneel, H. D. Smet, J. Vanfleteren and A. V. Calster, Opt. Eng., Vol. 40(2), p. 259 (2001)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top