跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/08/02 18:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃泰元
研究生(外文):Tai-Yuan Huang
論文名稱:高分子薄膜電晶體之退火效應
論文名稱(外文):The annealing effect on polymer thin-film transistors
指導教授:陳方中陳方中引用關係
指導教授(外文):Fang-Chung Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:顯示科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:53
中文關鍵詞:高分子聚合物聚(3-己烷�囮h)有機薄膜電晶體溶劑退火熱退火
外文關鍵詞:polymerpoly(3-hexylthiophene)P3HTorganic thin-film transistorsOTFTssolvent annealingthermal annealing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用二種熱退火方式:熱退火和溶劑退火來增加以高分子為主動層的薄膜電晶體的元件特性。實驗結果得知,即使沒有在主動層與二氧化矽絕緣層之間加入修飾層,元件的效率仍然可以藉由退火效應而得到提升。比較發現,溶劑退火增加的特性較熱退火明顯。結合二種退火方式,我們能進一步增加元件的整體特性。經過分析,我們認為相較於熱退火,溶劑退火的方式可以大幅改善高分子自我排列的能力,而形成具有較高規則性的薄膜,也因此造成元件特性的改善。
We introduced two annealing methods, thermal annealing and solvent annealing to increase the performance of poly(3-hexylthiophene) thin-film transistors. The done performance was enhanced by the annealing process even without the interface treatment between the insulator and the active layer. Comparing of the two annealing processes, the enhancement of the solvent annealing is more significant. Furthermore, the performance of devices can be increased by combining the two of the annealing processes.
The solvent annealing can assist the self-organization of P3HT rather than the thermal annealing. The self-organization of P3HT would form more regular films and results in the enhancement of P3HT devices.
Chapter 1 Introduction 1
1.1 Organic Electronics 1
1.2 Introduction to the Conjugated Polymer 3
1.3 Introduction to the P3HT 3
1.4 Improvements of P3HT Thin-Film Transistors 7
1.5 Structures of organic thin-film transistors 8
1.6 Motivations 9
1.7 Thesis Organization 10
Chapter 2 Mechanism and Operation 11
2.1 The Charge Carrier Transportation in Organic Semiconductors 11
2.1.1 Hopping Model 12
2.1.2 Multiple Trapping and Release (MTR) 12
2.2 The Operation of Organic TFT 13
2.3 The Parameters Extraction of Organic Thin Film Transistors 14
Chapter 3 Experiments 17
3.1 The Materials 17
3.2 The Device Fabrication 19
3.2.1 Substrates Preparation 19
3.2.2 The Device Fabrication 19
3.3 The Device Measurement 22
3.3.1 I-V Characteristics Measurement 22
3.3.2 Surface Morphology Measurement 23
Chapter 4 Results and Discussions 25
4.1 The Effect of the Annealing 25
4.1.1 The Effect of the Thermal Annealing 25
4.1.2 The Effect of the Solvent Annealing 28
4.1.3 The Solvent Annealing Effect on Other Processes 31
4.2 The Analysis of the Annealing Effect 38
4.2.1 The Morphologic Analyses of the Solvent Annealing 38
4.2.2 The XRD Diagram of the Different Evaporation Rates 42
4.2.3 The UV-Visible Absorption Spectrum 46
Chapter 5 Conclusions 49

References 51
1 S. R. Forrest, "The path to ubiquitous and low-cost organic electronic appliances on plastic," Nature 428 (6986), 911-918 (2004).
2 F. Ebisawa, T. Kurokawa, and S. Nara, "Electrical-Properties Of Polyacetylene Polysiloxane Interface," Journal Of Applied Physics 54 (6), 3255-3259 (1983).
3 A. Tsumura, H. Koezuka, and T. Ando, "Macromolecular Electronic Device - Field-Effect Transistor With A Polythiophene Thin-Film," Applied Physics Letters 49 (18), 1210-1212 (1986).
4 A. Assadi, C. Svensson, M. Willander et al., "Field-Effect Mobility Of Poly(3-Hexylthiophene)," Applied Physics Letters 53 (3), 195-197 (1988).
5 G. Horowitz, X. Z. Peng, D. Fichou et al., "Role Of The Semiconductor Insulator Interface In The Characteristics Of Pi-Conjugated-Oligomer-Based Thin-Film Transistors," Synth. Met. 51 (1-3), 419-424 (1992).
6 C. D. Dimitrakopoulos and P. R. L. Malenfant, "Organic thin film transistors for large area electronics," Adv. Mater. 14 (2), 99-+ (2002).
7 C. K. Chiang, C. R. Fincher, Y. W. Park et al., "Electrical-Conductivity In Doped Polyacetylene," Phys. Rev. Lett. 39 (17), 1098-1101 (1977).
8 Z. Bao, A. Dodabalapur, and A. J. Lovinger, "Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility," Applied Physics Letters 69 (26), 4108-4110 (1996).
9 M. Surin, P. Leclere, R. Lazzaroni et al., "Relationship between the microscopic morphology and the charge transport properties in poly(3-hexylthiophene) field-effect transistors," Journal Of Applied Physics 100 (3) (2006).
10 H. Sirringhaus, P. J. Brown, R. H. Friend et al., "Two-dimensional charge transport in self-organized, high-mobility conjugated polymers," Nature 401 (6754), 685-688 (1999).
11 H. Sirringhaus, N. Tessler, and R. H. Friend, "Integrated optoelectronic devices based on conjugated polymers," Science 280 (5370), 1741-1744 (1998).
12 H. Sirringhaus, P. J. Brown, R. H. Friend et al., "Microstructure-mobility correlation in self-organised, conjugated polymer field-effect transistors," Synth. Met. 111, 129-132 (2000).
13 Y. Kim, S. Cook, S. M. Tuladhar et al., "A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells," Nat. Mater. 5 (3), 197-203 (2006).
14 A. Zen, J. Pflaum, S. Hirschmann et al., "Effect of molecular weight and annealing of poly (3-hexylthiophene)s on the performance of organic field-effect transistors," Adv. Funct. Mater. 14 (8), 757-764 (2004).
15 R. J. Kline and M. D. McGehee, "Morphology and charge transport in conjugated polymer," Polym. Rev. 46 (1), 27-45 (2006).
16 J. Paloheimo, H. Stubb, P. Ylilahti et al., "Field-Effect Conduction In Polyalkylthiophenes," Synth. Met. 41 (1-2), 563-566 (1991).
17 A. Babel and S. A. Jenekhe, "Alkyl chain length dependence of the field-effect carrier mobility in regioregular poly(3-alkylthiophene)s," Synth. Met. 148 (2), 169-173 (2005).
18 H. C. Yang, T. J. Shin, L. Yang et al., "Effect of mesoscale crystalline structure on the field-effect mobility of regioregular poly(3-hexyl thiophene) in thin-film transistors," Adv. Funct. Mater. 15 (4), 671-676 (2005).
19 J. F. Chang, B. Q. Sun, D. W. Breiby et al., "Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents," Chem. Mat. 16 (23), 4772-4776 (2004).
20 D. H. Kim, Y. D. Park, Y. S. Jang et al., "Enhancement of field-effect mobility due to surface-mediated molecular ordering in regioregular polythiophene thin film transistors," Adv. Funct. Mater. 15 (1), 77-82 (2005).
21 D. H. Kim, Y. Jang, Y. D. Park et al., "Surface-induced conformational changes in poly(3-hexylthiophene) monolayer films," Langmuir 21 (8), 3203-3206 (2005).
22 R. J. Kline, M. D. McGehee, and M. F. Toney, "Highly oriented crystals at the buried interface in polythiophene thin-film transistors," Nat. Mater. 5 (3), 222-228 (2006).
23 A. Salleo, M. L. Chabinyc, M. S. Yang et al., "Polymer thin-film transistors with chemically modified dielectric interfaces," Applied Physics Letters 81 (23), 4383-4385 (2002).
24 S. Cho, K. Lee, J. Yuen et al., "Thermal annealing-induced enhancement of the field-effect mobility of regioregular poly(3-hexylthiophene) films," Journal Of Applied Physics 100 (11) (2006).
25 V. Shrotriya, Y. Yao, G. Li et al., "Effect of self-organization in polymer/fullerene bulk heterojunctions on solar cell performance," Applied Physics Letters 89 (6) (2006).
26 G. Li, V. Shrotriya, J. S. Huang et al., "High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends," Nat. Mater. 4 (11), 864-868 (2005).
27 D. H. Kim, Y. Jang, Y. D. Park et al., "Controlled one-dimensional nanostructures in poly(3-hexylthiophene) thin film for high-performance organic field-effect transistors," J. Phys. Chem. B 110 (32), 15763-15768 (2006).
28 J. Park, S. Lee, and H. H. Lee, "High-mobility polymer thin-film transistors fabricated by solvent-assisted drop-casting," Org. Electron. 7 (5), 256-260 (2006).
29 K. C. Dickey, J. E. Anthony, and Y. L. Loo, "Improving organic thin-film transistor performance through solvent-vapor annealing of solution-processable triethylsilylethynyl anthradithiophene," Adv. Mater. 18 (13), 1721-+ (2006).
30 Morrison and body, Organic Chemistry, sixth edition, 502 (1992).
31 G. Horowitz, "Organic field-effect transistors," Adv. Mater. 10 (5), 365-377 (1998).
32 P. G. Lecomber and W. E. Spear, "Electronic Transport In Amorphous Silicon Films," Phys. Rev. Lett. 25 (8), 509-& (1970).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊