跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/02 02:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡上傑
研究生(外文):Shang-Chieh Chien
論文名稱:高能量效率與低操作電壓之高分子電激磷光元件
論文名稱(外文):Polymeric Electrophosphorescent Devices with Low Turn-on Voltages and High Power Conversion Efficiencies by Blending with Poly(ethylene glycol)
指導教授:陳方中陳方中引用關係
指導教授(外文):Fang-Chung Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:顯示科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:54
中文關鍵詞:有機發光二極體磷光發光效率能量發光效率
外文關鍵詞:Organic light emitting diodephosphorescentluminance efficiencypower conversion efficiency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:91
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討以[ITO/PEDOT:PSS/PVK:PBD:Ir(mppy)3/陰極]為主要結構的有機綠光磷光發光二極體,在主動層中加入聚乙二醇[poly(ethylene glycol)],並嘗試不同的陰極材料以探討有機層和金屬間的作用與元件整體表現的影響,以改善磷光發光二極體的操作電壓。在以鋁作為金屬陰極材料時,經過混入聚乙二醇於主動層中,元件發光效率(Efficiency: cd/A)可從原本將近0.28 cd/A提升到15.6 cd/A,更重要的是整個元件的起始電壓從10V降低到5.6V。另外,在以LiF/Ca/Al為金屬陰極材料時,經過加入聚乙二醇到元件主動層內,也可以使元件的起始電壓從4V降低到3V,同時元件效率維持原本標準元件之發光效率23 cd/A,因此可以使整個元件的能量發光效率(Power efficiency: lm/W)從9 lm/W提升到14 lm/W。最後我們也成功地利用此方法改善其他發光顏色元件的特性。
By blending poly(ethylene glycol) (PEG) into the active layer of green electrosphosphorescent devices, the luminance efficiency of the device with Al cathode achieves to 16cd/A.. More importantly, the turn-on voltage was lower than that of the conventional device. In addition, the device performance of this kind device with the LiF/Ca/Al cathode architecture after blending of 10 wt.% PEG was also investigated. It is found that the driving voltage of the device was lower than the conventional device, while the luminance efficiency reminds high. Consequently, a higher power conversion efficiency (14 lm/W) than that of the control device (9 lm/w) has been achieved. Finally, this work also has demonstrated the similar idea is successful for other color triplet device.
Chapter 1: Introduction 1
1-1 Preface 1
1-2 OLEDs structure 3
1-3 The operation of OLEDs 4
1-4 The limitation of singlet polymer polymer light emitting diode 5
1-5 phosphorescent Organic light emitting diodes 7
1-6 the mechanism of harvesting triplet excitons 7

Chapter 2: Motivation and Objective 10
2-1 My motivation 10
2-2 Past literature for lower turn-on voltage 11

Chapter 3: The experimental process for PLED 15
3-1 ITO pattern 15
3-2 Clean of ITO glass substrate 15
3-3 The fabrication processes of polymer light-emitting diodes 16

Chapter 4 Literature Review 21

Chapter 5 Experimental Results 25
5-1 Device performance based on Al cathode 25
5-2 Device performance based on Ca/Al cathode 28
5-3 Device performance based on LiF/Ca/Al cathode 30

Chapter 6 Discussions- Mechanism of PEG in active layer 33
6-1 Photovoltaic measurement for mechanism 33
6-2 XPS measurement for chemcical interaction 36
6-3 Different Ir(mppy)3 for triplet device with PEG 38
6-4 AFM morphology with/without PEG 40

Chapter 7 Red phosphorescent PLEDs 43
7-1 Red triplet device performance with PEG effect 43
7-2 Increasing Ir(pid)(acac) dopant concentration 46

Chapter 8 Conclusion and Future work 50


Reference 51-54
1 R. H. Friend, R. W. Gymer, A. B. Holmes et al., "Electroluminescence in conjugated polymers," Nature 397 (6715), 121-128 (1999).
2 C. K. Chiang, C. R. Fincher, Y. W. Park et al., "Electrical-Conductivity In Doped Polyacetylene," Physical Review Letters 39 (17), 1098-1101 (1977).
3 C. W. Tang and S. A. Vanslyke, "Organic Electroluminescent Diodes," Applied Physics Letters 51 (12), 913-915 (1987).
4 H. Sirringhaus, P. J. Brown, R. H. Friend et al., "Two-dimensional charge transport in self-organized, high-mobility conjugated polymers," Nature 401 (6754), 685-688 (1999).
5 A. Tsumura, H. Koezuka, and T. Ando, "Macromolecular Electronic Device - Field-Effect Transistor With A Polythiophene Thin-Film," Applied Physics Letters 49 (18), 1210-1212 (1986).
6 D. J. Gundlach, Y. Y. Lin, T. N. Jackson et al., "Pentacene organic thin-film transistors - Molecular ordering and mobility," Ieee Electron Device Letters 18 (3), 87-89 (1997).
7 C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, "Plastic solar cells," Advanced Functional Materials 11 (1), 15-26 (2001).
8 M. Granstrom, K. Petritsch, A. C. Arias et al., "Laminated fabrication of polymeric photovoltaic diodes," Nature 395 (6699), 257-260 (1998).
9 L. P. Ma, J. Liu, and Y. Yang, "Organic electrical bistable devices and rewritable memory cells," Applied Physics Letters 80 (16), 2997-2999 (2002).
10 M. D. McGehee and A. J. Heeger, "Semiconducting (conjugated) polymers as materials for solid-state lasers," Advanced Materials 12 (22), 1655-1668 (2000).
11 M. Stossel, J. Staudigel, F. Steuber et al., "Electron injection and transport in 8-hydroxyquinoline aluminum," Synthetic Metals 111, 19-24 (2000).
12 T. Wakimoto, Y. Fukuda, K. Nagayama et al., "Organic EL cells using alkaline metal compounds as electron injection materials," Ieee Transactions On Electron Devices 44 (8), 1245-1248 (1997).
13 C. Ganzorig and M. Fujihira, "Evidence for alkali metal formation at a cathode interface of organic electroluminescent devices by thermal decomposition of alkali metal carboxylates during their vapor deposition," Applied Physics Letters 85 (20), 4774-4776 (2004).
14 T. M. Brown, R. H. Friend, I. S. Millard et al., "Electronic line-up in light-emitting diodes with alkali-halide/metal cathodes," Journal Of Applied Physics 93 (10), 6159-6172 (2003).
15 C. I. Wu, C. T. Lin, Y. H. Chen et al., "Electronic structures and electron-injection mechanisms of cesium-carbonate-incorporated cathode structures for organic light-emitting devices," Applied Physics Letters 88 (15) (2006).
16 M. Baldo and M. Segal, "Phosphorescence as a probe of exciton formation and energy transfer in organic light emitting diodes," Physica Status Solidi A-Applied Research 201 (6), 1205-1214 (2004).
17 M. A. Baldo, M. E. Thompson, and S. R. Forrest, "High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer," Nature 403 (6771), 750-753 (2000).
18 M. A. Baldo, D. F. O'Brien, Y. You et al., "Highly efficient phosphorescent emission from organic electroluminescent devices," Nature 395 (6698), 151-154 (1998).
19 M. A. Baldo, S. Lamansky, P. E. Burrows et al., "Very high-efficiency green organic light-emitting devices based on electrophosphorescence," Applied Physics Letters 75 (1), 4-6 (1999).
20 X. Gong, J. C. Ostrowski, D. Moses et al., "Electrophosphorescence from a polymer guest-host system with an iridium complex as guest: Forster energy transfer and charge trapping," Advanced Functional Materials 13 (6), 439-444 (2003).
21 Y. Y. Noh, C. L. Lee, J. J. Kim et al., "Energy transfer and device performance in phosphorescent dye doped polymer light emitting diodes," Journal Of Chemical Physics 118 (6), 2853-2864 (2003).
22 F. C. Chen, S. C. Chang, G. F. He et al., "Energy transfer and triplet exciton confinement in polymeric electrophosphorescent devices," Journal Of Polymer Science Part B-Polymer Physics 41 (21), 2681-2690 (2003).
23 T. M. Brown, J. S. Kim, R. H. Friend et al., "Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer," Applied Physics Letters 75 (12), 1679-1681 (1999).
24 X. H. Yang, D. Neher, D. Hertel et al., "Highly efficient single-layer polymer electrophosphorescent devices," Advanced Materials 16 (2), 161-+ (2004).
25 K. M. Vaeth and C. W. Tang, "Light-emitting diodes based on phosphorescent guest/polymeric host systems," Journal Of Applied Physics 92 (7), 3447-3453 (2002).
26 H. M. Liu, J. He, P. F. Wang et al., "High-efficiency polymer electrophosphorescent diodes based on an Ir (III) complex," Applied Physics Letters 87 (22) (2005).
27 J. S. Huang, G. Li, E. Wu et al., "Achieving high-efficiency polymer white-light-emitting devices," Advanced Materials 18 (1), 114-117 (2006).
28 M. Stossel, J. Staudigel, F. Steuber et al., "Space-charge-limited electron currents in 8-hydroxyquinoline aluminum," Applied Physics Letters 76 (1), 115-117 (2000).
29 P. Piromreun, H. Oh, Y. L. Shen et al., "Role of CsF on electron injection into a conjugated polymer," Applied Physics Letters 77 (15), 2403-2405 (2000).
30 X. H. Yang and D. Neher, "Polymer electrophosphorescence devices with high power conversion efficiencies," Applied Physics Letters 84 (14), 2476-2478 (2004).
31 X. Y. Deng, W. M. Lau, K. Y. Wong et al., "High efficiency low operating voltage polymer light-emitting diodes with aluminum cathode," Applied Physics Letters 84 (18), 3522-3524 (2004).
32 H. B. Wu, F. Huang, Y. Q. Mo et al., "Efficient electron injection from a bilayer cathode consisting of aluminum and alcohol-/water-soluble conjugated polymers," Advanced Materials 16 (20), 1826-+ (2004).
33 T. F. Guo, F. S. Yang, Z. J. Tsai et al., "Organic oxide/Al composite cathode in efficient polymer light-emitting diodes," Applied Physics Letters 88 (11) (2006).
34 T. F. Guo, F. S. Yang, Z. J. Tsai et al., "Organic oxide/Al composite cathode in small molecular organic light-emitting diodes," Applied Physics Letters 89 (5) (2006).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊