(3.238.186.43) 您好!臺灣時間:2021/02/26 13:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾威仁
研究生(外文):Wei-ren Tseng
論文名稱:雨滴粒徑分布模擬─雙偏極化雷達驗證
論文名稱(外文):Simulation of Raindrop Size Distribution:Verification using the Dual-polarization Radar
指導教授:陳台琦
學位類別:碩士
校院名稱:國立中央大學
系所名稱:大氣物理研究所
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:59
中文關鍵詞:雲模式雷達雨滴粒徑分布
外文關鍵詞:cloud modelbin modelraindrop size distributionradarDSD
相關次數:
  • 被引用被引用:1
  • 點閱點閱:171
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
大學雙偏極化雷達反演空中雨滴粒徑分布之技術,模擬台灣山區夏季午後天氣系統中,層狀區與對流區之雨滴粒徑分布的演化過程,並以雷達觀測產品作為驗證。
研究結果發現,在沒有考慮水平方向空氣平流的情況下,透過給予一組層狀區上空3.5公里處的雨滴粒徑分布,一維雲模式能夠順利掌握到該區域的中值體積直徑向下逐漸增加、高低層差值隨時間逐漸減小的趨勢。此外模擬9至10分鐘後其模擬之垂直分布即相當接近雷達的反演場。強度逐漸減弱的對流區,模式計算出來的中值體積直徑在離地3.5至2.5公里的1公里內有減小的趨勢、在2.5公里以下則維持平衡的狀況不再變化。而雷達反演的中值體積直徑在3.5公里以下則是一直保持定值。推論主要的原因包含對流區可能存在本實驗並未內入模式計算的空氣平流運動;並且不論是雷達反演雨滴粒徑分布、或者一維雲模式均以無冰相粒子的暖雨過程作為前提,倘若該區域為冰水混相的狀態,則需要經由濾除冰粒子的數量方能有效進行應用。
Along the long history of the microphysical model development, the distrometer is one of the main tools to verify the evolution of the raindrop size distribution from the model calculation. In this research, the advantages of the dual-polarization radar, such as, the greater spatial and temporal resolution, and the ability of retrieving the raindrop size distribution using the reflectivity (ZH) , differential reflectivity (ZDR), and a given μ - Λ relationship in the gamma form distribution. So, the major purpose of this research is to use radar data to confirm the output of the one dimensional cloud model during the real case. In order to understand the characteristics in both the stratiform and convective zones of a summer thunderstorm in North Taiwan, the raindrop size distribution in both regions were carefully retrieved from the dual-polarization radar data.
There are distinct results in the stratiform and convective zones. In the stratiform zone, the median volume diameter (D0) retrieved from the NCU radar is increasing downward. Although lacking the advection information in the model, the outputs agree well with the observation data. In the convective zone, the median volume diameter computed from the model is decreasing at first 1 km decent and then near constant along the rest of the fall. The radar retrieval were also near constant below 3.5 km however. The possible explanations are the existence of ice or supercooled water in the convective area; it causes the error in both radar retrieval and model calculations because of the default warm rain assumption.
中文摘要 i
英文摘要 ii
致謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
符號說明 ix

第一章 緒論 1
1-1  前言 1
1-2  文獻回顧 1
1-3  研究動機與方向 4

第二章 資料來源與分析 5
2-1  觀測儀器 5
2-2  雷達資料處理 6

第三章 模式設定與雷達反演雨滴粒徑分布之方法 8
3-1  模式簡說 8
3-2  模式的數值方法 8
3-3  微物理作用項 9
3-4  模式設定 10
3-5  雙偏極化雷達參數簡介 11
3-5-1 反射率 11
3-5-2 差異反射率 12
3-5-3 同極化相關係數 13
3-6 雨滴粒徑分布的計算與擬合 14
3-7  雙偏極化雷達反演雨滴粒徑分布 15
3-8  利用雨滴粒徑分布反演降水物理積分參數 17

第四章 個案分析 20
4-1  個案介紹 20
4-2  雷達觀測資料分析 20
4-3 雷達反演資料分析 21
4-4  敏感度測試 22
4-4-1 單一微物理過程 23
4-4-2 垂直解析度與不同的初始雨滴粒徑分布 24
4-4-3 環境場與微物理作用對於降水物理積分參數的影響 24
4-5  真實個案的模擬分析 28
4-5-1 層狀區的模擬分析 28
4-5-2 對流區的模擬分析 29

第五章 結論與未來展望 31
5-1  結論 31
5-2  未來展望 32

參考文獻 33
Berry, E. X., 1967: Cloud droplet growth by coalescence. J. Atmos. Sci., 24, 688-701.
──, and R. L. Reinhardt, 1974: An analysis of cloud drop growth by collection: Part II. Single initial distribution. J. Atmos. Sci., 31, 1825-1831.
Böhm, J, P., 1992: A general hydrodynamic theory for mixed-phase microphysics. Part II: collision kernels for coalescence. Atmos. Res., 27, 275-290.
Brandes, E. A., G. Zhang, and J. Vivekanandan, 2003: An evaluation of a drop distribution based polarimetric radar rainfall estimator. J. Appl. Meteor., 42, 652-660.
──, ──, and ──, 2004: Comparison of polarimetric radar drop size distribution retrieval algorithms. J. Atmos. Oceanic Tech., 21, 584-598.
Brazier-Smith, P. R., S. G. Jennings and J. Latham, 1973: Raindrop interactions and rainfall rates within clouds. Quart. J. Roy. Meteor. Soc., 99, 260-272.
Brown, P. S., Jr., 1988: The Effects of Filament, Sheet, and Disk Breakup upon the Drop Spectrum. J. Atmos. Sci., 45, 712-718.
Brown, P. S., Jr., 1989: Coalescence and Breakup-Induced Oscillations in the Evolution of the Raindrop Size Distribution. J. Atmos. Sci., 46, 1186-1192.
Chen, J.-P., and D. Lamb, 1994: Simulation of Cloud Microphysical and Chemical Processes Using a Multicomponent Framework. Part I: Description of the Microphysical Model. J. Atmos. Sci., 51, 2613-2630.
──, and S.-T. Liu, 2004: Physically based two-moment bulkwater parametrization for warm-cloud microphysics. Q. J. R. Meteorol. Soc., 130, 51-78.
Gorgucci, E. V., G. Scarchiilli, V. Chandrasekar, and V. N. Bringi, 2000: Measurement of mean raindrop shape from polarimetric radar observations. J. Atmos. Sci., 57, 3406-3413.
Gorgucci, E. V., V. Chandrasekar, V. N. Bringi, and G. Scarchilli, 2002: Estimation of Raindrop Size Distribution Parameters from Polarimetric Radar Measurements. J. Atmos. Sci., 59, 2373-2384.
Illingworth, A. J., and T. M. Blackman, 2002: The need to represent raindrop size spectra as normalized gamma distributions for the interpretation of polarimetric radar observations. J. Appl. Meteor., 41, 286-297.
──, 2004: Improved precipitation rates and data quality by using polarimetric measurements. Advanced Applications of Weather Radar, Chapter 5, Springer Press, 130-166.
Kessler, E., On the distribution and continuity of water substance in atmospheric circulations., Amer. Meteor. Soc., 84pp
Kozu, T., and K. Nakamura, 1991: Rainfall parameter estimation from dual-radar measurements combining reflectivity profile and path-integrated attenuation. J. Atmos. Oceanic Tech.
List, R., and J. R. Gillespite, 1976: Evolution of raindrop spectra with collision-introduced breakup. J. Atmos. Sci., 33, 2007-2013.
──, N. R. Donaldson, and R.E. Stewart, 1987: Temporal Evolution of Drop Spectra to Collisional Equilibrium in Steady and Pulsating Rain. J. Atmos. Sci., 44, 362-372.
Low, T. B., and R. List, 1982: Collision, Coalescence and Breakup of Raindrops. Part I: Experimentally Established Coalescence Efficiencies and Fragment Size Distributions in Breakup. J. Atmos. Sci., 39, 1591-1606.
──, and R. List, 1982: Collision, Coalescence and Breakup of Raindrops. Part II: Parameterization of Fragment Size Distributions. J. Atmos. Sci., 39, 1607-1619.
Marshall, J. S., and W. McK. Palmer, 1948: The distribution of raindrops with size. J. Atmos. Sci., 5, 165-166.
Ochs, H. T., and K. V. Beard, 1984: Laboratory measurements of collection efficiencies for accretion. J. Atmos. Sci., 41, 863-867.
Ray, P. S., 1972: Broad-band complex refractive indices of ice and water. Appl. Opt., 11, 1836-1844.
Seliga, T. A., and V. N. Bringi, 1976: Potential Use of Radar Differential Reflectivity Measurements at Orthogonal Polarizations for Measuring Precipitation. J. Appl. Meteor. 15, 69-76.
Srivastava, R. C., 1971: Size distribution of raindrops generated by their breakup and coalescence. J. Atmos. Sci., 28, 410-415.
Tzivion, S., G. Feingold, and Z. Levin, 1987: An efficient numerical solution to the stochastic collection equation. J. Atmos. Sci., 44, 3139-3149.
──, ──, and ──, 1989: The evolution of raindrop spectra. Part II: Collisional collection/breakup and evaporation in a rainshaft. J. Atmos. Sci., 46, 3312-3327.
Twomey, S., 1965: Size measurements of natural cloud nuclei. J. Rech. Atmos., 2, 113-119.
Ulbrich, C. W., 1983: Natural Variations in the Analytical Form of the Raindrop Size Distribution. J. Appl. Meteor., 22, 1764-1775.
Valdez, M. P., and K. C. Young, 1985: Number Fluxes in Equilibrium Raindrop Populations: A Markov Chain Analysis. J. Atmos. Sci., 42, 1024-1036.
Waldvogel, A., 1974: The N0 jump of raindrop spectra. J. Atmos. Sci., 31, 1067-1078.
Willis, P. T., 1984: Function fits to some observed dropsize distributions and parameterization of rain. J. Atmos. Sci., 41, 1648-1661.
Young, K. C., 1975: The evolution of drop spectra due to condensation, coalescence, and breakup. J. Atmos. Sci., 32, 965-973.
Zhang, G., J. Vivekanandan, and E. Brandes, 2001: A method for estimating rain rate and drop size distribution form polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39, 830-841.
張偉裕,「利用雨滴譜儀分析雨滴粒徑分布:納莉颱風個案」,國立中央大學,碩士論文,民國91年。
林位總,「利用二維雨滴譜儀研究雨滴譜特性」,國立中央大學,碩士論文,民國93年。
紀博庭,「利用中央大學雙偏極化雷達資料反求雨滴粒徑分佈及降雨率方法的研究」,國立中央大學,碩士論文,民國94年。
呂崇華,「雙偏極化雷達資料分析梅雨鋒面雨滴粒徑分布的物理特性」,國立中央大學,碩士論文,民國95年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔