(3.236.175.108) 您好!臺灣時間:2021/03/01 13:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李建佑
研究生(外文):Chien-Yu Lee
論文名稱:利用雙塔變壓吸附程序濃縮及回收氣化產氫製程中之二氧化碳與氫氣
論文名稱(外文):Using Dual-Bed PSA Process to Concentrate and Recover H2 and CO2 from Gasification Process for H2 Production
指導教授:周正堂
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:141
中文關鍵詞:變壓吸附氫氣二氧化碳實驗13X沸石5A沸石活性碳層床
外文關鍵詞:layered bedactivated carbonPressure swing adsorptionhydrogencarbon dioxideexperimentzeolite 13Xzeolite 5A
相關次數:
  • 被引用被引用:4
  • 點閱點閱:353
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
煤炭進行水蒸氣觸媒反應後,進一步將觸媒重組物通過水煤氣轉化反應器(water gas-shift reactor)則可得到大量以氫氣、二氧化碳為主體的混合氣體(syngas)。但經由上述所得典型混合產氣,大部分氣體成分為H2、CO2及N2。因此,氫氣的純化程序為製造高純度氫氣(99%+)不可或缺的步驟。
本研究便以合成氣的組成為目標,以實驗探討使用變壓吸附製程純化合成氣中二氧化碳與氫氣的最佳操作條件。
實驗主要分為二階段,以雙塔四步驟真空變壓吸附(4 steps vacuum swing adsorption)製程,來進行操作變數對製程影響的探討。
第一階段為CO2-VSA (vacuum swing adsorption),主要為回收合成氣中之CO2,吸附劑採用zeolite 13X,進料組成為模擬合成氣,訂為40% H2、50% CO2、10% N2;第二階段為H2-VSA,主要再純化第一階段之弱吸附出氣(塔頂出氣),吸附劑採用activated carbon及zeolite 5A混合填塔,進料組成為第一階段CO2-VSA之塔頂出氣組成,訂為60% H2、23.4% CO2、16.6% N2。
實驗上藉由改變操作變數,如:進料壓力、步驟時間、活性碳長度比(carbon ratio ,c.r.)等,以得到最佳的分離操作條件。
結果,可在第一階段CO2-VSA將CO2濃度達到99%(回收率59%);第二階段H2-VSA將H2 濃度達到95%(回收率44%)。
The gas from coal, then passing through the water gas-shift reactor,will get a large mount gas mixture (syngas) with main components H2, CO2 and N2. For this reason, it is necessary to have a purification process to manufacture high purity (99%+) hydrogen.
This study experimental study the use of PSA (pressure swing adsorption) process to purify the CO2 and H2 in syngas.
The process includes two stages,which uses the two bed 4-steps vacuum swing adsorption process,to study the effects of the operating parameter on the system.
Stage 1 is the CO2-VSA (vacuum swing adsorption), mainly separating the CO2 of syngas. The adsorbent is zeolite 13X. Feed gas mixture contains 40% H2, 50% CO2, and 10% N2, which simulats the syngas composition. Stage 2 is the H2-VSA, mainly purifying the weak adsorbed component gas (mainly H2) from the bed top of the stage 1. The adsorbents include activated carbon and zeolite 5A in a layered bed. Feed gas composition is the composition of the bed top gas of the stage 1, which is 60% H2, 23.4% CO2 and 16.6% N2.
The optimal operating conditions is obtained by changing the operating variables,for example,feed gas pressure,step time and carbon ratio in the bed.
For stage 1 CO2-VSA,the CO2 purity can reach 99% with a recovery of 59%; for stage 2 H2-VSA the purity can reach 95% with recovery 44%.
摘要 i
Abstract ii
誌謝 iii
目 錄 iv
圖目錄 vi
表目錄 viii
符號說明 ix
第一章 緒論 1
第二章 變壓吸附簡介與文獻回顧 7
2.1 變壓吸附簡介 7
2.1.1 吸附現象簡介 7
2.1.2 吸附程序簡介 8
2.1.3 變壓吸附的基本原理 9
2.1.4 吸附劑的選擇 17
2.1.5 吸附劑的種類 25
2.1.6 變壓吸附程序的基本操作步驟 26
2.2 文獻回顧 29
2.2.1 PSA製程之發展與改進 29
2.2.2 以PSA製程回收二氧化碳的應用 30
2.2.3 以PSA製程純化氫氣的應用 33
第三章 PSA濃縮二氧化碳及氫氣的方法 36
3.1 變壓吸附實驗程序 36
3.2 實驗裝置、各部規格及特性 42
3.4 真空變壓吸附程序實驗步驟與條件 53
第四章 結果與討論 57
4.1 Stage1 CO2-VSA程序之探討 59
4.1.1 Skarstrom程序下吸附劑的吸附效果比較 61
4.1.2 Skarstrom程序下變換壓力對UOP 13X-APG與UOP PSA O2 HP沸石的影響 63
4.1.3 三種不同的四步驟程序之比較 68
4.1.4 Skarstrom-Vacuum程序下變換T1時間的影響 71
4.1.5 Skarstrom-Vacuum程序下變換T2時間的影響 77
4.2 Stage 2 H2-VSA程序之探討 81
4.2.1 Skarstrom-Vacuum程序下的簡單測試 83
4.2.2 Skarstrom-Vacuum程序下變換壓力的影響 90
4.2.3 Skarstrom-Vacuum程序下變換T2時間的影響 94
4.2.4 Skarstrom-Vacuum程序下變換c.r.(carbon ratio)的影響 98
第五章 結論 102
參考文獻 103
附錄A GC操作步驟 111
附錄B 可程式控制器控制與程式 113
附錄 C-1 Stage1 CO2-VSA程序各點實驗數據 123
附錄 C-2 Stage2 H2-VSA程序各點實驗數據 129
附錄 D-1 UOP MOLSIV Type 13X沸石物理參數 136
附錄 D-2 UOP 13X-APG MOLSIV沸石物理參數 137
附錄 D-4 Merck Molecule sieve 0.5nm沸石物理參數 139
附錄 D-5 Calgon AC Type BPL 4×10 granular物理參數 140
附錄 D-6 Calgon AC Type BPL 6×16 granular物理參數 141
〔1〕作者:Doyle,R. ,譯者:宋宜真,「有這麼革命性嗎?」,科學人,第59期,18頁,2007年1月。
〔2〕網路資料:經濟部能源局:能源政策白皮書-第二篇 國際能源供需情勢,2005年,取自:http://www.moeaec.gov.tw/policy/EnergyWhitePaper/94/main/main.html。
〔3〕網路資料:Savinar, M.D.:The Oil Age Is Over, 2004, 取自:http://home.quicknet.nl/qn/prive/b.dwarswaard/TheOilAgeIsOver.pdf。
〔4〕網路資料:Savinar, M.D.:Peak oil breaking news, 2007, 取自:http://www.lifeaftertheoilcrash.net/。
〔5〕網路資料:Duncan, R.C.:The Peak of World Oil Production and the Road to the Olduvai orge, 2000, 取自:http://www.hubbertpeak.com/duncan/olduvai2000.htm。
〔6〕網路資料:王塗發:台灣因應二氧化碳排放減量應採之對策,1998年5月16日,取自:http://www.gcaa.org.tw/issue/nuclear/news-01/87051601.htm。
〔7〕網路資料:氣候變化綱要公約資訊網:聯合國氣候變化綱要公約國家通訊,中華民國(台灣)(UNFCCC National Communication of the Republic of China)-執行摘要,2002年7月,取自:http://sd.erl.itri.org.tw/fccc/ch/nc/nc.htm。
〔8〕網路資料:IPCC Working Group1:IPCC AR4 WG1 Final Report, 2007, 取自:http://ipcc-wg1.ucar.edu/wg1/wg1-report.html。
〔9〕網路資料:施聖洋:氫經濟II,2006年10月31日,取自:http://www.me.ncu.edu.tw/energy/MEA026/mea026.htm。
〔10〕曹芳海、趙令裕和周桂蘭,「國內氫能發展探討」,能源報導,2006年10月號,5~7頁,經濟部能源局,2006年10月。
〔11〕網路資料:施亞鈞:中國大百科:化工-氫氣,2007年,取自:http://203.72.198.245/web/Content.asp?ID=25515&Query=1。
〔12〕羅興安,「雙塔式真空變壓吸附法濃縮二氧化碳之研究」,國立中央大學,碩士論文,2000年。
〔13〕Yang,R.T., Gas Separation by Adsorption Processes, Imperial College Press., London, 1997.
〔14〕Sircar, S., “Basic Research Needs for Design of Adsorptive Gas Separation Processes”, Ind. Eng. Chem. Res., Vol.45, No.16, pp.5435-5448, Aug. 2 2006.
〔15〕Ruthvan, D.M., Principles of Adsorption and Adsorption Processes, Wiley, New York, 1984.
〔16〕Jones, R.L., G.E. Keller II, and R.C. Wells, “Rapid pressure swing adsorption process with high enrichment factor”, U.S. Patent 4,194,892, assigned to Union Carbide Corporation, Mar. 25 1980.
〔17〕Chue, K.T., J.N. Yoo, S.H. Cho, and R.T. Yang, “Comparison of Activated Carbon and Zeolite 13X for CO2 Recovery from Flue Gas by Pressure Swing Adsorption”, Ind. Eng. Chem. Res., Vol.34, No.2, pp.591-598, 1995.
〔18〕Siriwardane, R.V., M.S. Shen, E.P. Fisher, and J.A. Poston, “Adsorption of CO2 on Molecular Sieves and Activated Carbon”, Energy & Fuels, Vol.15, No.2, pp.279-284, 2001.
〔19〕Siriwardane, R.V., M.S. Shen, E.P. Fisher, “Adsorption of CO2, N2 and O2 on Natural Zeolites”, Energy & Fuels, Vol.17, No.3, pp.571-576, 2003.
〔20〕崔群和姚虎卿,「變壓吸附法分離H2-CO2氣體混合物」,南京化工學院學報,第16卷,第三期,36~43頁,1994年8月。
〔21〕Park, J.H., J.N. Kim, S.H. Cho, J.D. Kim, and R.T. Yang, “Adsorber Dynamics and Optimal Design of Layered Beds for Multicomponent Gas Adsorption”, Chem. Eng. Sci., Vol.53, Iss.23, pp.3951-3963, 1998.
〔22〕Sircar, S., T.C. Goden, and M.B. Rao, “Activated Carbon for Gas Separation and Storage”, CARBON, Vol.34, No.1, pp.1-12, 1996.
〔23〕Skarstrom, C.W., “Method and Apparatus for Fractionating Gaseous Mixtures by Adsorption”, U.S. Patent 2,944,627, assigned to Esso Research and Engineering Company, 1960.
〔24〕Berlin, N.H., “Method for Providing an Oxygen-Enriched Environment”, U.S. Patent 3,280,536, assigned to Esso Research and Engineering Company, Oct. 1966.
〔25〕Kowler, D.E., and R.H. Kadlec, “The Optimal Control of a Periodic Adsorber: Part I. Experiment”, AIChE J., Vol.18, Iss.16, pp.1207-1212, Nov. 1972.
〔26〕Tamura, T., “Absorption Process For Gas Separation”, U.S. Patent 3,797,201, Mar. 1974.
〔27〕Klein, G., and T. Vermeulen , “Cyclic Performance of Layered Beds for Binary Ion Exchange”, AIChE Symposium Series, Vol.71, No.152, pp.69-76, 1975.
〔28〕Yang, R.T., and S.J. Doong, “Hydrogen Purification by the Multibed Pressure Swing Adsorption Process”, Reactive Polymers, Ion Exchangers, Sorbents, Vol.6, Iss.1, pp.7-13, Jun. 1987.
〔29〕Watson, C.F., R.D. Whitley, “Multiple Zeolite Adsorbent Layers in Oxygen Separation”, U.S Patent 5,529,610, assigned to Air Products and Chemicals, Inc, Jun. 25 1996.
〔30〕Izumi, J., “Process Off-Gas Treatment with Pressure Swing Adsorption”, Proceedings of Symposium on Adsorption Processes, pp.71-84, Chung-Li, R.O.C.(Taiwan), 1992.
〔31〕Kikkinides, E.S., R.T. Yang, and S.H. Cho, “Concentration and Recovery of Crbon Dioxide from Flue Gas by Pressure Swing Adsorption”, Ind. Eng. Chem. Res., Vol.32, No.11, pp.2714-2720, Nov. 1993.
〔32〕Kim, J.N., K.T. Chue, K.I. Kim, S.H. Cho, and J.D. Kim, “Non-Isothermal Adsorpiton of Nitrogen-Carbon Dioxide Mixture in a Fixed Bed of Zeolite-X”, J. Chem. Eng. Japan, Vol.27, No.1, pp.45-51, 1994.
〔33〕Hwang, K.S., and W.K. Lee, “The Adsorption and Desorption Breakthrough Behavior of Carbon Monoxide and Carbon Dioxide on Activated Carbon. Effect of Total Pressure and Pressure-Dependent Mass Transfer Coefficients ”, Sep. Sci. Tech., Vol.29, Iss.14, pp.1857-1891, 1994.
〔34〕Diagne, D., M. Goto, and T. Hirose, “New PSA Process with Intermediate Feed Inlet Position Operated with Dual Refluxes: Application to Carbon Dioxide Removal and Enrichment”, J. Chem. Eng. Japan, Vol.27, No.1, pp.85-89, 1994.
〔35〕Pugsley, T.S., F. Berruti, and A. Chakma, “Computer Simulation of a Novel Circulating Fluidized Bed Pressure-Temperature Swing Adsorber for Recovering Carbon Dioxide from Flue Gases”, Chem. Eng. Sci., Vol.49, Iss.24, Suppl.1, pp.4465-4481, 1994.
〔36〕Diagne, D., M. Goto, and T. Hirose, “Parametric Studies on CO2 Separation and Recovery by a Dual Reflux PSA Process Consisting of Both Rectifying and Stripping Sections”, Ind. Eng. Chem. Res., Vol.34, No.9, pp.3083-3089, Sep. 1995.
〔37〕Diagne, D., M. Goto, and T. Hirose, “Numerical Analysis of a Dual Refluxed PSA Process During Simultaneous Removal and Concentration of Carbon Dioxide Dilute Gas from Air”, J. Chem. Tech. Biotechnol., Vol.65, Iss.1, pp.29-38, Jan. 1996.
〔38〕Saji, A., Y. Takamura, H. Noda, F. Watanabe, H. Matsuda, and Y. Hasatani, “Application of PSA to Separation of Carbon Dioxide from Flue Gas”, Kagaku Kougaku Ronbunsyu, Vol.23, Iss.2, pp.149-156, 1997.
〔39〕Gomes, V.G., and M.M. Hassan, “Coalseam Methane Recovery by Vacuum Swing Adsorption”, Sep. Puri. Tech., Vol.24, pp.189-196, Jun. 2001.
〔40〕Na, B.K., H. Lee, K.K. Koo, and H.K. Song, “Effect of Rinse and Recycle Methods on the Pressure Swing Adsorption Process To Recover CO2 from Power Plant Flue Gas Using Activated Carbon”, Ind. Eng. Chem. Res., Vol.41, No.22, pp.5498-5503, 2002.
〔41〕Park, J.H., H.T. Beum, J.N. Kim, and S.H. Cho, “Numerical Analysis on the Power Consumption of the PSA Process for Recovering CO2 from Flue Gas”, Ind. Eng. Chem. Res., Vol.41, No.16, pp.4122-4131, Aug. 7 2002.
〔42〕Siriwardane, R.V., M.S. Shen, and E.P. Fisher, “Adsorption of CO2, N2, and O2 on Natural Zeolites”, Energy & Fuels, Vol.17, No.3, pp.571-576, 2003.
〔43〕Ko, D., R. Siriwardane, and L.T. Biegler, “Optimization of a Pressure-Swing Adsorption Process Using Zeolite 13X for CO2 Sequestration”, Ind. Eng. Chem. Res., Vol.42, No.2, pp.339-348, Jan. 22 2003.
〔44〕Siriwardane, R.V., M.S. Shen, and E.P. Fisher, “Adsorption of CO2 on Zeolites at Moderate Temperstures”, Energy & Fuels, Vol.19, No.3, pp.1153-1159, 2005.
〔45〕Sircar, S., and T.C. Golden, “Purification of Hydrogen by Pressure Swing Adsorption”, Sep. Sci. Tech., Vol.35, Iss.5, pp.667-687, 2000.
〔46〕Yang, R.T., Adsorbents: Fundamentals and Applications, Wiley-Interscience, N.J. U.S.A.,2003.
〔47〕Kumar, R., “Pressure Swing Adsorption Process: Performance Optimum and Adsorbent Selection”, Ind. Eng. Chem. Res., Vol.33, No.6, pp.1600-1605, Jun. 1994.
〔48〕Yang, J., S. Han, C. Cho, C.H. Lee, and H. Lee, “Bulk Separation of Hydrogen Mixtures by a One-column PSA Process”, Sep. Tech., Vol.5, Iss.4, pp.239-249, Nov. 1995.
〔49〕Chlendi, M., D. Tondeur, “Dynamic Behaviour of Layered Columns in Pressure Swing Adsorption”, Gas. Sep. Purif., Vol.9, No.4, pp.231-242, 1995.
〔50〕Pigorini, G., and M.D. LeVan, “Equilibrium Theory for Pressure Swing Adsorption. 2. Purification and Enrichment in Layered Beds”, Ing. Eng. Chem. Res., Vol.36, Iss.6, pp.2296-2305, 1997.
〔51〕Yang, J., C.H. Lee, and J.W. Chang, “Separation of Hydrogen Mixtures by a Two-Bed Pressure Swing Adsorption Process Using Zeolite 5A”, Ind. Eng. Chem. Res., Vol.36, Iss.7, pp.2789-2798, 1997.
〔52〕Yang, J., and C.H. Lee, “Adsorption Dynamics of a Layered Bed PSA for H2 Recovery from Coke Oven Gas”, AIChE J., Vol.44, No.6, pp.1325-1332, Jun. 1998.
〔53〕Lee, C.H., J. Yang, and H. Ahn, ”Effects of Carbon-to-Zeolite Ratio on Layered Bed H2 PSA for Coke Oven Gas”, AIChE J., Vol.45, No.3, pp.535-545, Mar. 1999.
〔54〕Park, J.H., J.N. Kim, and S.H. Cho, “Performance Analysis of Four-Bed H2 PSA Process Using Layered Beds”, AIChE J., Vol.46, No.4, pp.790-802, Apr. 2000.
〔55〕Jee, J.G., M.B. Kim, and C.H. Lee, “Adsorption Characteristics of Hydrogen Mixtures in a Layered Bed:Binary, Ternary, and Five-Component Mixtures”, Ind. Eng. Chem. Res., Vol.40, No.3, pp.868-878, Feb. 7 2001.
〔56〕Takamura, Y., S. Narita, J. Aoki, S. Hironaka, and S. Uchida, “Evaluation of Dual-bed Pressure Swing Adsorption for CO2 Recovery from Boiler Exhaust Gas”, Sep. Puri. Tech., Vol.24, Iss.3, pp.519-528, Sep. 1 2001.
〔57〕Zhou, L., C.Z. Lu, S.J. Bian, and Y.P. Zhou, “Pure Hydrogen from the Dry Gas of Refineries via a Noval Pressure Swing Adsorption Process”, Ind. Eng. Chem. Res., Vol.41, No.21, pp.5290-5297, Oct. 16 2002.
〔58〕Knaebel, S.P., D.H. Ko, and L.T. Biegler, “Simulation and Optimization of a Pressure Swing Adsorption System: Recovering Hydrogen from methane”, Adsorption, Vol.11, Suppl. 1, pp.615-620, Jul. 2005.
〔59〕Voss, C., “Applications of Pressure Swing Adsorption Technology”, Adsorption, Vol.11, Suppl.1, pp.527-529, Jul. 2005.
〔60〕Verelst, H., and G.V. Baron, “Adsorption of Oxygen, Nitrogen, and Argon on 5A Molecular Sieve”, J. Chem. Eng. Data., Vol.30, Iss.1, pp.66-70, Jan. 1985.
〔61〕Bird, R.B., W.E. Stewart, and E.N. Lightfoot, Transport Phenomena, 2nd ed., Wiley, U.S.A., 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔