(44.192.10.166) 您好!臺灣時間:2021/03/06 19:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃彰彥
研究生(外文):Jhang-Yan Huang
論文名稱:以蛋白質體學篩選嗜高溫細菌Geobacilluskaustophilus之抗熱蛋白質
論文名稱(外文):Proteomics screening of thermostable proteins from thermophile Geobacillus kaustophilus
指導教授:黃雪莉
學位類別:碩士
校院名稱:國立中央大學
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:195
中文關鍵詞:蛋白質體學高溫菌抗熱蛋白質熱穩定酵素
外文關鍵詞:proteomicsthermozymethermophilethermostable protein
相關次數:
  • 被引用被引用:3
  • 點閱點閱:187
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
全球對酵素的需求未來將以每年7%的成長至2009年的50億美元左右,高附加價值的酵素主要用途在工業、醫藥與研究的應用。化學反應在加速工業製程上常常需要在高溫條件下表現;然而,並非很多的酵素對熱具穩定性。能夠在加熱的過程中突破現今的限制並讓蛋白質維持活性和穩定性為工業應用上之研究趨勢。從中溫菌、嗜熱菌、超嗜熱菌的同功蛋白質之間,結構與序列的差異是基礎研究中極重要的課題。微生物可生長於範圍寬廣的環境溫度中,蛋白質若是來自於生長於高溫的生物,其在高溫之活性與穩定性更佳。微生物根據他們的最適生長溫度可以區分為:超嗜熱性(>80℃)、嗜熱性(45-80℃)、嗜中溫性(20-45℃)與嗜冷性(<20℃)四類。本研究建立以一嗜熱性細菌進行高通量篩選熱穩定蛋白質之新穎方法。選取Geobacillus kaustophilus ATCC8005將其培養在最適溫度(55℃),並於對數期取出菌體,去除細胞膜部份,將胞內蛋白體經由熱處理,再經超高速離心,取得經熱處理但不會沉澱之可溶性次蛋白體,經三種蛋白體學方法(一維或二維電泳分離蛋白質之膠體內胰蛋白脢消化或直接將次蛋白體消化),以兩種不同質譜儀分析不同來源蛋白質之胜肽序列,可高通量且快速鑑定蛋白質。已完成基因定序的G.kaustophilus HTA426提供我們在大量篩選熱穩定蛋白之高準確性鑑定。G. kaustophilus ATCC8005 胞內蛋白體經過不同溫度(55、65、75、85、95及100℃),30分鐘的熱處理後,分別篩選出330、207、114、75、44和32個熱穩定蛋白質,酵素各佔了74、70、58、45、34和31%。依照不同溫度鑑定到的蛋白質以COG進行功能分類:三類功能之蛋白質(轉譯和蛋白質後修飾、代謝及伴隨蛋白和無機離子代謝),較具熱穩定性。另外,在G. kaustophilus ATCC8005熱穩定蛋白體中小分子量(>30 kDa)、pI值在3-4.9和9-11.2的蛋白質較具熱穩定性。在驗證我們的方法上,分三個方向進行:(一)以17個蛋白質在不同溫度之量的變化所預測的Tm值,與其熱處理溫度比較;(二)以目前已發表純化自Geobacillus屬的13個蛋白質,與本研究鑑定到相同的熱穩定蛋白質比較,其中11個的Tm值或最適反應溫度與本研究熱處理篩選的溫度相近;(三)以生物資訊方法,預測所得熱穩定蛋白質之Tm或熱穩定的機率,進行相關性探討。
這些被確認的蛋白質進一步透過文獻與專利搜尋,推薦高附加價值的熱穩定酵素進行基因選值與智慧財產保護。
The world demand for enzymes is expected to increase 7 percent per year to nearly US$5 billion in 2009. The high value-added enzymes are most needed in industries, medical and research applications. Chemical reactions often need to be performed at high temperatures to accelerate industrial processes. However, not many enzymes are stable to heat. Research is required to make proteins remain active and stable while being heated to overcome current limits on their industrial applications. Accordingly, investigations of the key features on structure and sequence from thermophilic and mesophilic proteins are crucial topic in basic research. Microorganisms have been found to grow in environments at a very wide range of temperatures. Proteins from an organism grown at high temperature are more active and stable in such temperatures. Microorganisms are grouped into different classes according to their temperature optima:
hyperthermophiles (>80℃), thermophiles (45-80℃), mesophiles (20-45℃), and psychrophiles (<20℃). This research plans to establish a high-throughput screening of thermostable proteins by using proteomic approach. Geobacillus kaustophilus ATCC8005, a thermophilic bacterium was grown at its optimal temperature (55℃) and harvested at log phase. The crude cell extracts were obtained followed by a 55-100℃ treatment for 30 min. The soluble sub-proteomes were obtained after ultracentrifugation to remove aggregated proteins. After separating by 1D and 2D-gel electrophoresis, the proteins were digested by trypsin in-gel. Another approach is the proteomes of which the proteins were digested without separation. The MALDI-Q-Tof MS and ESI-Q-Tof MS were used to identify proteins from 2D PAGE and 1D PAGE/in-solution digestion, respectively. The sequenced genome from G. kaustophilus HTA426 allows us to accurately identify the target proteins in a high-throughput format. There were a total of 330, 207, 114, 75, 44 and 32 thermostable proteins identified at 55, 65, 75, 85, 95 and 100℃, respectively. There are three methods to confirm the accuracy of our research: (1) the Tm of 17 thermostable proteins were predicted by semi-quantification of spots volume change from different heated temperatures; (2) comparison of 13 thermostable proteins from current studies to purified proteins (Geobacillus sp.): 11 thermostable proteins were shown to possess very close properties with the literature report; (3) the Tm of 17 thermostable proteins were predicted to be reasonable with the heat treatment results.
The identified proteins are further analyzed through literature and patent for their potential in applications. Among them, peroxiredoxin, thioredoxin, superoxide dismutase, acetyl-CoA acetyltransferase, branched-chain amino acid aminotransferase and hypothetical protein GK2713/GK2820 (contained cellulase conserved domain) are the candidates for our future cloning work to confirm their thermal stability.
摘要 I
Abstract III
目錄 V
圖目錄 VIII
表目錄 X
附錄 XI
縮寫與全名對照表 XII
壹、 緒論 1
一、 嗜熱微生物之特性 1
二、 蛋白質熱穩定機制 3
三、 熱穩定酵素 6
四、 蛋白質體學應用於篩選熱穩定蛋白質 8
五、 Geobacillus kaustophilus 簡介 9
六、 研究目的 10
貳、 材料及方法 11
一、 細菌與培養基 11
二、 細菌生長 11
三、 菌體蛋白質之製備 12
四、 蛋白質定量 13
五、 聚丙烯醯胺膠體一維電泳 13
六、 等電點焦集及聚丙烯醯胺膠體二維電泳 15
七、 電泳膠之蛋白質染色 18
八、 軟體分析電泳膠體 19
九、 蛋白質之胰蛋白酶消化 19
十、 質譜儀分析與資料庫之搜尋 21
十一、 實驗儀器與化學藥品 22
參、 結果 25
一、 G. kaustophilus ATCC8005之生長 25
二、 不同蛋白質起始濃度進行不同高溫熱處理之差異 25
三、 G. kaustophilus ATCC8005之膠體電泳分析 26
四、 溶液內消化(Gel-free, In-solution digestion) 28
五、 不同方法鑑定之熱穩定蛋白質 29
六、 熱穩定蛋白質總數 30
七、 進行基因選殖的熱穩定蛋白質 30
八、 熱穩定蛋白質之功能分類 31
肆、 討論 34
一、 熱穩定蛋白質之趨勢 34
二、 高通量篩選熱穩定蛋白質之準確性 37
三、 一般篩選熱穩定蛋白質之比較 38
四、 生物資訊應用於蛋白質熱穩定之預測 39
伍、 結論與建議 41
陸、 參考文獻 43
圖 52
表 75
附錄 146
Alsop, E., Silver, M. and Livesay, D. R. 2003. Optimized electrostatic surfaces parallel increased thermostability: a structural bioinformatic analysis. Protein Eng. 16: 871-874.
Anderson, D. E., Becktel, W. J. and Dahlquist, F. W. 1990. pH-induced denaturation of proteins: a single salt bridge contributes 3-5 kcal/mol to the free energy of folding of T4 lysozyme. Biochemistry. 29: 2403-2408.
Andronopoulou, E. and Vorgias, C. E. 2003. Purification and characterization of a new hyperthermostable, allosamidin-insensitive and denaturation-resistant chitinase from the hyperthermophilic archaeon Thermococcus chitonophagus. Extremophiles. 7: 43-53.
Antranikian, G., Vorgias, C. E. and Bertoldo, C. 2005. Extreme environments as a resource for microorganisms and novel biocatalysts. Adv Biochem Eng Biotechnol. 96: 219-262.
Bao, Q., Tian, Y., Li, W., Xu, Z., Xuan, Z., Hu, S., et al. 2002. A complete sequence of the T. tengcongensis genome. Genome Res. 12: 689-700.
Blochl, E., Rachel, R., Burggraf, S., Hafenbradl, D., Jannasch, H. W. and Stetter, K. O. 1997. Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 degrees C. Extremophiles. 1: 14-21.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72: 248-254.
Braiuca, P., Buthe, A., Ebert, C., Linda, P. and Gardossi, L. 2007. Volsurf computational method applied to the prediction of stability of thermostable enzymes. Biotechnol J. 2: 214-220.
Bult, C. J., White, O., Olsen, G. J., Zhou, L., Fleischmann, R. D., Sutton, G. G., et al. 1996. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science. 273: 1058-1073.
Chakravarty, S. and Varadarajan, R. 2000. Elucidation of determinants of protein stability through genome sequence analysis. FEBS Lett. 470: 65-69.
Chen, L., Brugger, K., Skovgaard, M., Redder, P., She, Q., Torarinsson, E., et al. 2005. The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J Bacteriol. 187: 4992-4999.
Chon, H., Nakano, R., Ohtani, N., Haruki, M., Takano, K., Morikawa, M., et al. 2004. Gene cloning and biochemical characterizations of thermostable ribonuclease HIII from Bacillus stearothermophilus. Biosci Biotechnol Biochem. 68: 2138-2147.
Deckert, G., Warren, P. V., Gaasterland, T., Young, W. G., Lenox, A. L., Graham, D. E., et al. 1998. The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature. 392: 353-358.
Deejing, S., Yoshimune, K., Lumyong, S. and Moriguchi, M. 2005. Purification and characterization of hyperthermotolerant leucine aminopeptidase from Geobacillus thermoleovorans 47b. J Ind Microbiol Biotechnol. 32: 269-276.
Edmondson, S. P., Qiu, L. and Shriver, J. W. 1995. Solution structure of the DNA-binding protein Sac7d from the hyperthermophile Sulfolobus acidocaldarius. Biochemistry. 34: 13289-13304.
Eisen, J. A., Nelson, K. E., Paulsen, I. T., Heidelberg, J. F., Wu, M., Dodson, R. J., et al. 2002. The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc Natl Acad Sci U S A. 99: 9509-9514.
Empadinhas, N. and da Costa, M. S. 2006. Diversity and biosynthesis of compatible solutes in hyper/thermophiles. Int Microbiol. 9: 199-206.
Ewis, H. E., Abdelal, A. T. and Lu, C. D. 2004. Molecular cloning and characterization of two thermostable carboxyl esterases from Geobacillus stearothermophilus. Gene. 329: 187-195.
Farias, S. T., van der Linden, M. G., Rego, T. G., Araujo, D. A. and Bonato, M. C. 2004. Thermo-search: lifestyle and thermostability analysis. In Silico Biol. 4: 377-380.
Feng, L., Wang, W., Cheng, J., Ren, Y., Zhao, G., Gao, C., et al. 2007. Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci U S A. 104: 5602-5607.
Filipkowski, P., Duraj-Thatte, A. and Kur, J. 2007. Identification, cloning, expression, and characterization of a highly thermostable single-stranded-DNA-binding protein (SSB) from Deinococcus murrayi. Protein Expr Purif. 53: 201-208.
Fitz-Gibbon, S. T., Ladner, H., Kim, U. J., Stetter, K. O., Simon, M. I. and Miller, J. H. 2002. Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Proc Natl Acad Sci U S A. 99: 984-989.
Fukui, T., Atomi, H., Kanai, T., Matsumi, R., Fujiwara, S. and Imanaka, T. 2005. Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. Genome Res. 15: 352-363.
Futterer, O., Angelov, A., Liesegang, H., Gottschalk, G., Schleper, C., Schepers, B., et al. 2004. Genome sequence of Picrophilus torridus and its implications for life around pH 0. Proc Natl Acad Sci U S A. 101: 9091-9096.
Goodenough, P. W. and Jenkins, J. A. 1991. Protein engineering to change thermal stability for food enzymes. Biochem Soc Trans. 19: 655-662.
Gorg, A., Obermaier, C., Boguth, G., Harder, A., Scheibe, B., Wildgruber, R., et al. 2000. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis. 21: 1037-1053.
Goufman, E. I., Moshkovskii, S. A., Tikhonova, O. V., Lokhov, P. G., Zgoda, V. G., Serebryakova, M. V., et al. 2006. Two-dimensional electrophoretic proteome study of serum thermostable fraction from patients with various tumor conditions. Biochemistry (Mosc). 71: 354-360.
Graham, R. L., Pollock, C. E., Ternan, N. G. and McMullan, G. 2006. Top-down proteomic analysis of the soluble sub-proteome of the obligate thermophile, Geobacillus thermoleovorans T80: insights into its cellular processes. J Proteome Res. 5: 822-828.
Henne, A., Bruggemann, H., Raasch, C., Wiezer, A., Hartsch, T., Liesegang, H., et al. 2004. The genome sequence of the extreme thermophile Thermus thermophilus. Nat Biotechnol. 22: 547-553.
Hickey, D. A. and Singer, G. A. 2004. Genomic and proteomic adaptations to growth at high temperature. Genome Biol. 5: 117.
Hiromasa, Y., Aso, Y., Yamashita, S. and Meno, K. 2000. Thermally induced disintegration of the Bacillus stearothermophilus dihydrolipoamide dehydrogenase. Biosci Biotechnol Biochem. 64: 1923-1929.
Hori, N., Watanabe, M., Sunagawa, K., Uehara, K. and Mikami, Y. 1991. Production of 5-methyluridine by immobilized thermostable purine nucleoside phosphorylase and pyrimidine nucleoside phosphorylase from Bacillus stearothermophilus JTS 859. J Biotechnol. 17: 121-131.
Hoving, S., Gerrits, B., Voshol, H., Muller, D., Roberts, R. C. and van Oostrum, J. 2002. Preparative two-dimensional gel electrophoresis at alkaline pH using narrow range immobilized pH gradients. Proteomics. 2: 127-134.
Hu, H. Y., Hsu, W. H. and Chien, H. R. 2003. Characterization and phylogenetic analysis of a thermostable N-carbamoyl- l-amino acid amidohydrolase from Bacillus kaustophilus CCRC11223. Arch Microbiol. 179: 250-257.
Huang, S. L., Wu, L. C., Huang, H. D., Liang, H. K., Ko, M. T. and Horng, J. T. 2004a. A probabilistic method to correlate ion pairs with protein thermostability. Appl Bioinformatics. 3: 21-29.
Huang, S. L., Wu, L. C., Liang, H. K., Pan, K. T., Horng, J. T. and Ko, M. T. 2004b. PGTdb: a database providing growth temperatures of prokaryotes. Bioinformatics. 20: 276-278.
Huber, R., Eder, W., Heldwein, S., Wanner, G., Huber, H., Rachel, R., et al. 1998. Thermocrinis ruber gen. nov., sp. nov., A pink-filament-forming hyperthermophilic bacterium isolated from yellowstone national park. Appl Environ Microbiol. 64: 3576-3583.
Imachi, H., Sekiguchi, Y., Kamagata, Y., Hanada, S., Ohashi, A. and Harada, H. 2002. Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Int J Syst Evol Microbiol. 52: 1729-1735.
Jaenicke, R. 1998. What ultrastable globular proteins teach us about protein stabilization. Biochemistry (Mosc). 63: 312-321.
Jala, V. R., Prakash, V., Rao, N. A. and Savithri, H. S. 2002. Overexpression and characterization of dimeric and tetrameric forms of recombinant serine hydroxymethyltransferase from Bacillus stearothermophilus. J Biosci. 27: 233-242.
Kashefi, K. and Lovley, D. R. 2003. Extending the upper temperature limit for life. Science. 301: 934.
Kawarabayasi, Y., Hino, Y., Horikawa, H., Yamazaki, S., Haikawa, Y., Jin-no, K., et al. 1999. Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res. 6: 83-101, 145-152.
Kawarabayasi, Y., Sawada, M., Horikawa, H., Haikawa, Y., Hino, Y., Yamamoto, S., et al. 1998. Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3. DNA Res. 5: 55-76.
Kawashima, T., Amano, N., Koike, H., Makino, S., Higuchi, S., Kawashima-Ohya, Y., et al. 2000. Archaeal adaptation to higher temperatures revealed by genomic sequence of Thermoplasma volcanium. Proc Natl Acad Sci U S A. 97: 14257-14262.
Klenk, H. P., Clayton, R. A., Tomb, J. F., White, O., Nelson, K. E., Ketchum, K. A., et al. 1997. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature. 390: 364-370.
Li, W. F., Zhou, X. X. and Lu, P. 2005. Structural features of thermozymes. Biotechnol Adv. 23: 271-281.
Li, Y., Horng, J. C. and Raleigh, D. P. 2006. pH dependent thermodynamic and amide exchange studies of the C-terminal domain of the ribosomal protein L9: implications for unfolded state structure. Biochemistry. 45: 8499-8506.
Lilly, M., Bauer, F. F., Styger, G., Lambrechts, M. G. and Pretorius, I. S. 2006. The effect of increased branched-chain amino acid transaminase activity in yeast on the production of higher alcohols and on the flavour profiles of wine and distillates. FEMS Yeast Res. 6: 726-743.
Lin, L. L., Hsu, W. H., Wu, C. P., Chi, M. C., Chou, W. M. and Hu, H. Y. 2004. A thermostable leucine aminopeptidase from Bacillus kaustophilus CCRC 11223. Extremophiles. 8: 79-87.
Loprasert, S., Negoro, S. and Okada, H. 1988. Thermostable peroxidase from Bacillus stearothermophilus. J Gen Microbiol. 134: 1971-1976.
Madigan, M. T. and Oren, A. 1999. Thermophilic and halophilic extremophiles. Curr Opin Microbiol. 2: 265-269.
Mongodin, E. F., Hance, I. R., Deboy, R. T., Gill, S. R., Daugherty, S., Huber, R., et al. 2005. Gene transfer and genome plasticity in Thermotoga maritima, a model hyperthermophilic species. J Bacteriol. 187: 4935-4944.
Nakashima, H., Fukuchi, S. and Nishikawa, K. 2003. Compositional changes in RNA, DNA and proteins for bacterial adaptation to higher and lower temperatures. J Biochem (Tokyo). 133: 507-513.
Nazina, T. N., Tourova, T. P., Poltaraus, A. B., Novikova, E. V., Grigoryan, A. A., Ivanova, A. E., et al. 2001. Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. th. Int J Syst Evol Microbiol. 51: 433-446.
Nelson, K. E., Clayton, R. A., Gill, S. R., Gwinn, M. L., Dodson, R. J., Haft, D. H., et al. 1999. Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature. 399: 323-329.
Nicholls, A., Sharp, K. A. and Honig, B. 1991. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 11: 281-296.
Oikawa, T., Kataoka, K., Jin, Y., Suzuki, S. and Soda, K. 2001. Fragmentary form of thermostable leucine dehydrogenase of Bacillus stearothermophilus: its construction and reconstitution of active fragmentary enzyme. Biochem Biophys Res Commun. 280: 1177-1182.
Olsen, O., Thomsen, K. K., Weber, J., Duus, J. O., Svendsen, I., Wegener, C., et al. 1996. Transplanting two unique beta-glucanase catalytic activities into one multienzyme, which forms glucose. Biotechnology (N Y). 14: 71-76.
Omura, H., Ikemoto, M., Kobayashi, M., Shimizu, S., Yoshida, T. and Nagasawa, T. 2003a. Purification, characterization and gene cloning of thermostable O-acetyl-L-homoserine sulfhydrylase forming gamma-cyano-alpha-aminobutyric acid. J Biosci Bioeng. 96: 53-58.
Omura, H., Kuroda, M., Kobayashi, M., Shimizu, S., Yoshida, T. and Nagasawa, T. 2003b. Purification, characterization and gene cloning of thermostable O-acetyl-L-serine sulfhydrylase forming beta-cyano-L-alanine. J Biosci Bioeng. 95: 470-475.
Paz, A., Mester, D., Baca, I., Nevo, E. and Korol, A. 2004. Adaptive role of increased frequency of polypurine tracts in mRNA sequences of thermophilic prokaryotes. Proc Natl Acad Sci U S A. 101: 2951-2956.
Pedone, E., Cannio, R., Saviano, M., Rossi, M. and Bartolucci, S. 1999. Prediction and experimental testing of Bacillus acidocaldarius thioredoxin stability. Biochem J. 339 ( Pt 2): 309-317.
Razvi, A. and Scholtz, J. M. 2006. A thermodynamic comparison of HPr proteins from extremophilic organisms. Biochemistry. 45: 4084-4092.
Robb, F. T., Maeder, D. L., Brown, J. R., DiRuggiero, J., Stump, M. D., Yeh, R. K., et al. 2001. Genomic sequence of hyperthermophile, Pyrococcus furiosus: implications for physiology and enzymology. Methods Enzymol. 330: 134-157.
Russell, N. J. 1997. Psychrophilic bacteria--molecular adaptations of membrane lipids. Comp Biochem Physiol A Physiol. 118: 489-493.
Satyanarayana, T., Noorwez, S. M., Kumar, S., Rao, J. L., Ezhilvannan, M. and Kaur, P. 2004. Development of an ideal starch saccharification process using amylolytic enzymes from thermophiles. Biochem Soc Trans. 32: 276-278.
Schleper, C., Puehler, G., Holz, I., Gambacorta, A., Janekovic, D., Santarius, U., et al. 1995. Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J Bacteriol. 177: 7050-7059.
Sebela, M., Stosova, T., Havlis, J., Wielsch, N., Thomas, H., Zdrahal, Z., et al. 2006. Thermostable trypsin conjugates for high-throughput proteomics: synthesis and performance evaluation. Proteomics. 6: 2959-2963.
She, Q., Singh, R. K., Confalonieri, F., Zivanovic, Y., Allard, G., Awayez, M. J., et al. 2001. The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci U S A. 98: 7835-7840.
Slesarev, A. I., Mezhevaya, K. V., Makarova, K. S., Polushin, N. N., Shcherbinina, O. V., Shakhova, V. V., et al. 2002. The complete genome of hyperthermophile Methanopyrus kandleri AV19 and monophyly of archaeal methanogens. Proc Natl Acad Sci U S A. 99: 4644-4649.
Smith, D. R., Doucette-Stamm, L. A., Deloughery, C., Lee, H., Dubois, J., Aldredge, T., et al. 1997. Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics. J Bacteriol. 179: 7135-7155.
Suzuki, I., Simon, W. J. and Slabas, A. R. 2006. The heat shock response of Synechocystis sp. PCC 6803 analysed by transcriptomics and proteomics. J Exp Bot. 57: 1573-1578.
Szilagyi, A. and Zavodszky, P. 2000. Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure. 8: 493-504.
Takami, H., Nishi, S., Lu, J., Shimamura, S. and Takaki, Y. 2004a. Genomic characterization of thermophilic Geobacillus species isolated from the deepest sea mud of the Mariana Trench. Extremophiles. 8: 351-356.
Takami, H., Takaki, Y., Chee, G. J., Nishi, S., Shimamura, S., Suzuki, H., et al. 2004b. Thermoadaptation trait revealed by the genome sequence of thermophilic Geobacillus kaustophilus. Nucleic Acids Res. 32: 6292-6303.
Tanaka, Y., Tsumoto, K., Yasutake, Y., Umetsu, M., Yao, M., Fukada, H., et al. 2004. How oligomerization contributes to the thermostability of an archaeon protein. Protein L-isoaspartyl-O-methyltransferase from Sulfolobus tokodaii. J Biol Chem. 279: 32957-32967.
Tatusov, R. L., Fedorova, N. D., Jackson, J. D., Jacobs, A. R., Kiryutin, B., Koonin, E. V., et al. 2003. The COG database: an updated version includes eukaryotes. BMC Bioinformatics. 4: 41.
Tepliakov, A. V., Kuranova, I. P., Arutiunian, E. G., Frommel, C. and Hohne, W. E. 1990. [Crystal structure of thermitase and stability of subtilisins]. Bioorg Khim. 16: 437-447.
Vieille, C., Burdette, D. S. and Zeikus, J. G. 1996. Thermozymes. Biotechnol Annu Rev. 2: 1-83.
Vieille, C. and Zeikus, G. J. 2001. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev. 65: 1-43.
Wang, F., Wang, Z., Shao, W., Liu, J., Xu, C. and Zhuge, J. 2002. [Purification and properties of thermostable catalase in engineered E. coli]. Wei Sheng Wu Xue Bao. 42: 348-353.
Ward, N., Larsen, O., Sakwa, J., Bruseth, L., Khouri, H., Durkin, A. S., et al. 2004. Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). PLoS Biol. 2: e303.
Williams, R. A., Smith, K. E., Welch, S. G., Micallef, J. and Sharp, R. J. 1995. DNA relatedness of Thermus strains, description of Thermus brockianus sp. nov., and proposal to reestablish Thermus thermophilus (Oshima and Imahori). Int J Syst Bacteriol. 45: 495-499.
Zhang, Z., Wang, Y. and Ruan, J. 1998. Reclassification of Thermomonospora and Microtetraspora. Int J Syst Bacteriol. 48 Pt 2: 411-422.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔