跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/13 03:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳美伶
研究生(外文):Mei-Ling Chen
論文名稱:台灣海峽及台灣西部平原之沈積層速度構造
論文名稱(外文):Sediment Velocity Structures in the Taiwan Strait and the Coastal Plain of west Taiwan
指導教授:林殿順林殿順引用關係
指導教授(外文):Andrew Tien-Shun Lin
學位類別:碩士
校院名稱:國立中央大學
系所名稱:地球物理研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:110
中文關鍵詞:台灣海峽V0-k方法沈積層速度
外文關鍵詞:Taiwan StraitV0-k methodsediment velocity
相關次數:
  • 被引用被引用:5
  • 點閱點閱:321
  • 評分評分:
  • 下載下載:47
  • 收藏至我的研究室書目清單書目收藏:1
地球物理探勘多使用反射震測法瞭解地下構造形貌,然而震測剖面展示的是震波走時,需用速度加以轉換成地下深度。本研究使用井下與震測資料以及V0-k方法,建立台灣海峽及西部平原的沈積層速度構造。首先,假設岩層之波傳速度隨著深度加深呈線性遞增的趨勢(即V0-k方法,V0表岩層在海床或地表之震波速度,k表速度隨深度遞增的幅度),接著對每筆資料作速度與深度的迴歸分析,而得到V0(截距)、k(斜率)值,網格化這些值可得到V0與k的空間分佈。V0值的側向變化可反映表層沈積層特性:盆地內的V0值較低;而在西部麓山帶的V0值較高。k值變化則反映側向岩性差異與構造分佈,在難以壓縮之基盤高區具有異常高的k值。將V0、k和深度經過運算得到三維速度分佈,發現垂向速度變化主要受控於沈積物的深埋壓密作用;側向速度變化主要受控於斷陷作用與抬升作用;在垂直剖面的等速度曲線可反映地下構造幾何形貌。最後,利用井下鑽遇的漸新世分離不整合面深度,及其於震測剖面上顯示的時間轉換成深度,測試此三維速度構造之準確度。轉換深度的平均誤差百分比為4.78 %,顯示三維速度構造合理可信。
The method of reflection seismic imaging displays subsurface structures in time rather than in depth. One therefore needs to know the 3-D distribution of subsurface velocity in order to convert seismic time into depth and obtain 3-D subsurface depth structures. I use borehole and seismic data to compute a 3-D sediment velocity structure in the Taiwan Strait and the coastal plain in west Taiwan by using V0-k method. The V0-k method assumes that velocity increases with increasing depth in a linear form, in which V0 is the initial velocity at the seabed or on the ground surface, and k represents the rate of increase of the velocity with increasing depth. Fitting velocity with depth to a linear form for each data set obtains V0 (intercept) and k (slope) pairs, and gridding these values obtains the spatial distribution of V0 and k. The lateral variation of V0 reflects sediment characteristics with lower values in the basin and higher values in the western foothills. The variation of k correlates to the lithology difference and lateral structural variation. The value of k is exceptionally high in the areas of hardly compactible basement highs. Parameters of V0 and k were gridded in a 3-D depth volume. Comparing the velocity depth structures to seismic images, one finds that (1) the vertical velocity variation is mainly controlled by burial compaction of sediments; (2) the lateral velocity variation is caused by stratal offset resulted from major normal or reverse faulting; and (3) the isovelocity curves shown on cross-sections may reflect the geometry of the basement structure. Finally, I use the drilled depths of the Oligocene breakup unconformity (generally < 4 km in depth) and its corresponding depths as converted from seismic data and using the proposed velocity model to test the validity of the 3-D velocity model. The comparison yields a value of 4.78% of mean percentage error between drilled and predicted depths, indicating that the proposed velocity model predicts subsurface velocity reasonably well down to, at least, 4 km in depth.
中文提要 i
英文提要 ii
誌謝 iii
目錄 iv
圖目 vi
表目 ix

第一章 緒論 1
1-1研究動機 1
1-2岩石速度的物理性質及測定方法 4
1-2-1影響岩石速度分佈的物理性質 4
1-2-2常用岩石速度測定方法 7
1-3區域地質背景 13
1-3-1新生代大地構造 13
1-3-2新生代盆地之空間分佈及時間演化 15
第二章 V0-k方法 39
2-1速度函數 39
2-2 V0-k方法假設與公式推導 42
第三章 速度分析 46
3-1井下速度試驗 46
3-2資料來源與計算步驟 52
3-3 V0、k分佈 53
3-4三維速度分佈 58
第四章 討論 85
4-1時深轉換誤差分析 85
4-2其他速度函數比較 90
第五章 結論 97
參考文獻 99
附錄 105
中國石油學會(1987)地球物理探勘辭典(增修訂版)。台北市:中國石油股份有限公司海域石油探勘處,共523頁。
中國石油公司(2001)台灣地區各井線性速度函數時間-深度換算表。中國石油股份有限公司。
何春蓀(1986)台灣地質概論-台灣地質圖說明書(增訂第二版)。經濟部中央地質調查所,共164頁。
林哲銓(2005)台灣西南海域含天然氣水合物地層之構造架構與沈積特徵。國立中央大學地球物理研究所碩士論文,共152頁。
林朝棨、周瑞燉(1974)台灣地質。台中市:台灣省文獻委員會,共450頁。
俞何興、陳汝勤(1996)台灣海域之沈積盆地。台北市:渤海堂文化事業有限公司,共230頁。
胡錦城(1982)石油知識叢書-地球物理探勘。台北市:中國石油學會,共386頁。
Al-Chalabi, M. (1997) Time-depth relationships for multilayer depth conversion. Geophysical Prospecting, 45, 715-720.
Angelier, J., Lee, J. C., Chu, H. T., Lu, C. Y., Founier, M., Hu, J. C., Lin, N. T., Deffontaines, B., Delcaillau, B., Lacombe, O. and Lee, T. Q. (1995) Crustal extension in an active orogen: Taiwan. Active Collision in Taiwan, 3rd Sino-French Symposium, Progam and Extended Abstracts, 25-32.
Athy, L. F. (1930) Density, porosity and compaction of sedimentary rocks. Amer. Assoc. Petrol. Geol. Bull., 14, 1-24.
Bachman, S. B., Lewis, S. D. and Schweller, W. J. (1983) Evolution of a forearc basin, Luzon Central Valley, Philippines. Amer. Assoc. Petrol. Geol. Bull., 67, 1143-1162.
Box, R. and Lowrey, P. (2003) Reconciling sonic logs with check-shot surveys: Stretching synthetic seismograms. The Leading Edge, 510-517.
Briais, A., Patriat, P. and Tapponnier, P. (1993) Updated interpretation of magnetic-anomalies and sea-floor spreading stages in the South China Sea - implications for the Tertiary tectonics of Southeast Asia. J. Geophys. Res., 98, 6299-6328.
Chang, M. D. (1992) Integrated geological and geophysical interpretation of the Penghu basin. Petroleum Geol. Taiwan, 27, 237-250.
Chung, S. L., Sun, S. S., Tu, K., Chen, C-H. and Lee, C. Y. (1994) Late Cenozoic basaltic volcanism around the Taiwan Strait, SE China: Product of lithosphere-asthenosphere interaction during continental extension. Chem. Geol., 112, 1-20.
Chung, S. L., Jahn, B. M., Chen, S. J., Lee, T. and Chen, C. H. (1995) Miocene basalts in northwestern Taiwan: Evidence for EM-type mantle sources in the continental lithosphere. Geochim. Cosmochim. Acta, 59, 549-555.
Dix, C. H. (1955) Seismic velocities from surface measurements. Geophysics, 20, 68-86.
Etris, E. L., Crabtree, N. J. and Dewar, J. (2001) True depth conversion: more than a pretty picture. CSEG Recorder, 26, 11-22.
Faust, L. Y. (1951) Seismic velocity as a function of depth and geological time. Geophysics, 16, 192-206.
Gardner, G. H. F., Gardner, L. W. and Gregory, A. R. (1974) Formation velocity and density – the diagnostic basics for stratigraphic traps. Geophysics, 39, 770-780.
Hall, R., Ali, J. R., Anderson, C. D. and Baker, S. J. (1995) Origin and motion history of the Philippine Sea plate. Tectonophysics, 251, 1229-1250.
Hilde, T. W. C. and Lee, C. S. (1984) Origin and evolution of West Philippine Basin: A new interpretation. Tectonophysics, 102, 85-104.
Houston, C. E. (1939) Seismic paths, assuming a parabolic increase of velocity with depth. Geophysics, 4, 242-246.
Huang, S.-T., Yang, K.-M., Hung, J.-H., Wu, J.-C., Ting, H.-H., Mei, W.-W., Hsu, S.-H. and Lee, M. (2004) Deformation front development at the northeast margin of the Tainan basin, Tainan–Kaohsiung area, Taiwan. Marine Geophysical Researches, 25, 139-156.
Huang, T. C. (1978) Calcareous nannofossils of the subsurface pre-Miocene rocks from the Peikang Basement High and adjacent areas in western central Taiwan (Part I: Cretaceous). Petrol. Geol. Taiwan, 15, 49-87.
Huang, T. C. and Chi, W. R. (1979) Calcareous nannofossils of the subsurface pre-Miocene rocks from the Peikang Basement High and adjacent areas in western central Taiwan (Part II: Palaeocene). Petrol. Geol. Taiwan, 16, 95-129.
Jahn, B. M., Chen, P. Y. and Yen, T. P. (1976) Rb-Sr ages of granitic rocks in southeastern China and their tectonic significance. Geol. Soc. Amer. Bull., 87, 763-776.
Jahn, B. M., Zhou, X. H. and Li, J. L. (1990) Formation and tectonic evolution of southeastern China and Taiwan: isotopic and geochemical constraints. Tectonophysics, 183, 145-160.
Japsen, P. (1993) Influence of lithology and Neogene uplift on seismic velocities in Denmark. Amer. Assoc. Petrol. Geol. Bull., 77(2), 192-211.
Kaufman, H. (1953) Velocity functions in seismic prospecting. Geophysics, 18, 289-297.
Kearey, P., Brooks, M. and Hill, I. (2002) An introduction to geophysical exploration. Malden, MA: Blackwell Science.
Kim, K.-H., Chiu, J.-M., Pujol, J., Chen, K.-C., Huang, B.-S., Yeh, Y.-H. and Shen, P. (2005) Three-dimensional VP and VS structural models associated with the active subduction and collision tectonics in the Taiwan region. Geophys. J. Int., 162, 204-220.
Lee, T. Y., Tang, C. H., Ting, J. S. and Hsu, Y. Y. (1993) Sequence stratigraphy of the Tainan Basin, offshore southwestern Taiwan. Petrol. Geol. Taiwan, 28, 119-158.
Lin, A. T., Watts, A. B. and Hesselbo, S. P. (2003) Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research, 15, 453-478.
Ma, K. F., Wang, J. H. and Zhao, D. (1996) Three-dimensional seismic velocity structure of the crust and uppermost mantle beneath Taiwan. J. Phys. Earth, 44, 85-105.
Marsden, D. (1992) V0-k method of depth conversion. The Leading Edge, 11, 53-54.
Marsden, D., Bush, M. D. and Johng, D. S. (1995) Analytic velocity functions. The Leading Edge, 14, 775-782.
Rau, R. J. and Wu, F. T. (1995) Tomographic imaging of lithospheric structures under Taiwan. Earth Planet. Sci. Lett., 133, 517-532.
Ru, K. and Pigott, J. D. (1986) Episodic rifting and subsidence in the South China Sea. Amer. Assoc. Petrol. Geol. Bull., 70, 1136-1155.
Schlumberger (1989) Log interpretation principles/applications. Houston, Texas: Schlumberger educational services.
Sengbush, R. L. (1983) Seismic exploration methods. Boston IHRDC.
Sheriff, R. E. (1980) Seismic stratigraphy. Boston International Human Resources Development Corporation.
Sheriff, R. E. (1989) Geophysical methods. Englewood Cliffs, N.J Prentice Hall.
Slotnick, M. M. (1936) On seismic computations with applications I. Geophysics, 1, 9-22.
Smallwood, J. R. (2002) Use of V0-k depth conversion from shelf to deep-water: how deep is that brightspot? First Break, 20.2, 99-107.
Sun, S. C. (1982) The Tertiary basins of offshore Taiwan. In: Proceedings of the Second ASCOPE Conference and Exhibition (Ed. by A. Salivar-Sali), pp. 125-135. Manila, Philippines.
Taylor, B. and Hayes, D. E. (1983) Origin and history of the South China Sea. In: The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands, Part 2 (Ed. by D. E. Hayes), AGU Monograph, 27, 23-56.
Teng, L. S. (1992) Geotectonic evolution of Tertiary continental margin basins of Taiwan. Petrol. Geol. Taiwan, 27, 1-19.
Teng, L. S. and Lin, A. T. (2004) Cenozoic tectonics of the China continental margin: insights from Taiwan. In: Aspects of the Tectonic Evolution of China (Ed. by J. Malpas, C. J. Fletcher, J. C. Aitchinson & J. Ali). Geological Society, London, Special Publications, 226, 313-332.
van Ruth, P. J., Hillis, R. R. and Swarbrick, R. E. (2002) Detecting overpressure using porosity-based techniques in the Carnarvon Basin, Australia. APPEA Journal, 559-569.
Yang, K. M., Ting, H. H. and Yuan, J. (1991) Structural styles and tectonic modes of Neogene extensional tectonics in southwestern Taiwan: implication for hydrocarbon exploration. Petrol. Geol. Taiwan, 26, 1-31.
Yu, H. S. (1990) Stratigraphy, structure and tectonic history of Tainan basin off southwest Taiwan. Acta Oceanogr. Taiwanica, 25, 19-30.
Zhou, X. M. and Li, W. X. (2000) Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326, 269-287.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊