跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/16 10:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳美廷
研究生(外文):Mei-Ting Chen
論文名稱:運用氘核磁共振儀研究POPC/cholesterol膜之物理性質
論文名稱(外文):The Physical Properties of POPC/cholesterol Membranes: A Deuterium NMR Study
指導教授:內容為英文
學位類別:碩士
校院名稱:國立中央大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:45
中文關鍵詞:脂質浮排膽固醇人造細胞膜氘核磁共振儀
外文關鍵詞:2H NMRLipid RaftsPOPCModel MembranesCholeste
相關次數:
  • 被引用被引用:0
  • 點閱點閱:257
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
生物膜含有由特定的脂質及蛋白質所構成的區塊(domains),許多證據暗示著脂質浮排(lipid rafts)這種特殊的區塊在許多生物過程中扮演重要的角色。脂質浮排含有豐富的膽固醇(cholesterol)及抱合脂質(sphingolipids),被認為是一種較周圍環境更有序的液晶態。我們運用氘核磁共振儀研究由1-palmitoyl-2-oleoyl-sn-glycerol- 3-phosphocholine (POPC)及膽固醇兩種成分所組成的人造細胞膜的構造及相行為。我們以氘取代POPC sn-1鏈上的氫,其測得的光譜會隨著膽固醇濃度及溫度而改變,研究發現,加入膽固醇會降低膠態(so phase)POPC膜的有序程度;然而會使得液態膜的碳鏈變得有序。分析兩種液晶態光譜暗示著當溫度高於膠態到液晶無序態(ld phase)的相變溫度時有兩種不同碳鏈結構的液態區域共存於很寬的膽固醇濃度及溫度範圍,此外,POPC/chol 溫度對膽固醇濃度的相圖其兩種液態共存區較DPPC/chol相圖寬,這結果暗示著POPC的不飽和碳鏈阻礙POPC與膽固醇間的交互作用致使POPC和膽固醇在液態的不相溶性大於DPPC/chol。
Biological membranes contain domains of distinct lipid and protein compositions. Accumulating evidence suggests that specialized domains, called lipid rafts, play important roles in many biological processes. Raft domains, rich in cholesterol and sphingolipids, are though to be in a more ordered liquid-crystalline phase than its surroundings. We investigate the membrane structure and phase behavior of model membrane composed of 1-palmitoyl-2-oleoyl-sn- glycero-3-phosphocholine (POPC) and cholesterol bilayers using deuterium nuclear magnetic resonance (2H NMR). The sn-1 chain of POPC was perdeuterated and spectra were taken as a function of cholesterol concentration and temperature. It is found that addition of cholesterol decreases the order of the so-phase POPC membranes, whereas increases the chain order of the liquid-phase POPC membranes. Analysis of the liquid crystalline spectra suggests that two types of liquid crystalline domains, having distinct average chain conformations, coexist over wide cholesterol concentration and temperature ranges above the so-to-ld transition temperature of POPC membranes. Furthermore, the temperature-composition phase diagram of POPC/chol exhibits a considerably broader two-liquid-phase region than DPPC/chol [1]. This suggests that the unsaturated chain of POPC hinders the interaction of POPC with cholesterol, such than liquid-liquid immiscibility in POPC/chol occurs over a larger composition range than in DPPC/chol membranes.
Abstract I
Abstract in Chinese II
Acknowledgement III
Content V
Listof Figures VII
Chapter1 Introduction 1
1.1 Lipids 1
1.2 Fluid Mosaic Model 2
1.3 Lipid Rafts 4
1.4 Phase Behavior 5
1.5 Our Work 6
1.6 Model Membranes 7
1.7 POPC and Cholesterol 8
1.8 2H NMR Work on Lipid/sterol Binary System 9
1.9 POPC/cholesterol Work 10

Chapter2 Materials and Methods 11
2.1 Materials 11
2.2 Multilamellar Vesicles (MLVs) 11
2.3 NMR 11
2.3.1 Hardware 11
2.3.2 Measurement 14

Chapter3 Results and Discussions 20
3.1 POPC-d31/cholesterol Study 20
3.2 Compare POPC-d31/cholesterol and DPPC-
d62/cholesterol 40

Chapter4 Conclusions 42

References 44
[1] Molecular Biology of The Cell, Third Edition. Bruce Alberts, Dennis Bray, et al.
[2] Molecular Cell Biology, Fourth Edition. Harvey Lodish, Arnold Berk, et al.
[3] E. Gorter and F. Grendel (1925). J. Exp. Med. 41;439-443.
[4] K. Simons and E. Ikonen (1997). Nature. 387:569-572.
[5] Life – As A Matter of Fat. Ole G. Mouritsen.
[6] D. A. Brown and E. London (2000). J. Biol. Chem. 275: 17221-17224
[7] D. A. Brown and J. K. Rose (1992). Cell. 68: 533-544.
[8] M. S. Bretscher and S. Munro (1993). Science 261:1280-1281.
[9] P. J. Casey (1995). Science. 268:221-225.
[10] K. Simons and E. Ikonen (1997). Nature. 387:569-572.
[11] K. Simons and D. Toomre (2000). Nat. Rev. Mol. Cell Biol. 1: 31-41.
[12] K. Simons and E. Ikonen. (2000). Science. 1290:1721-1726.
[13] R. G. Anderson and K. Jacobson (2002). Science. 296:1821-1825.
[14] J. R. Silvius (2003). B.B.A. 1610:174-183.
[15] Robert B. Gennis. Biomembranes-molecular structure and function. 1989.
[16] M. R. Vist and J. H. Davis (1990). Biochemistry 29, 451-464.
[17] The structure of biological membranes, Second edition CRC Press LLC, Boca Raton, p.58. Philip L. Yeagle. 2004.
[18] T. Kochy and T. M. Bayerl (1993). P.R.E. 47:2109-2116.
[19] Paul Karakatsanis (1996). P.R.E. 54:1785-1790.
[20] Andrey Filippov et al (2004). B.J. 86:891-896.
[21] S. Raffy and J. Teissie (1999). B.J. 76: 2072-2080.
[22] Huang et al (1999). B.B.A. 1417:89-100.
[23] C. Pare and M. Lafleur (1998). B.J. 74:899-909.
[24] W. Guo et al (2002). B.J. 83:1465-1478.
[25] Y. W. Hsueh et al (2005). B.J. 88:1799.
[26] Y. K. Shin, and J. H. Freed (1989). B. J. 55:537-550.
[27] J. L. Thewalt et al (1992). Acta. Pharm. 42:9-23.
[28] E. Fukushima and Stephen B.W. Roeder. Experimental Pulse NMR: A Nuts and Bols Approach.
[29] J. H. Davis et al (1976). Chem. Phys. Lett. 42:390-394.
[30] Thewalt, J. L., and M. Bloom (1992). B. J. 63:1176-1181.
[31] Y.W. Hsueh, M. Zuckermann, J. Thewalt (2005). Concepts in Magnetic Resonance, 26A:35-46.
[32] Nezil, F.A., S. Bayerl, and M. Bloom (1992). B.J. 61:1413-1426.
[33] Lafleur, M., B. Fine, E. Sternin, P. R. Cullis, M. Bloom. B.J. 56:1037-1041.
[34] de Almeida, RFM, A. Fedorov, and M. Prieto (2003). B.J. 85:2406-2416.
[35] Filippov, A., G. Oradd, and G. Lindblom (2003). B.J. 84:3079-3086.
[36] S. L.Veatch and S. L. Keller (2005). P.R.L. 94:148101-148104.
[37] S. L. Veatch et al (2004). B.J. 86:2910-2922.
[38] M. R. Ali et al (2006). Biochem. 45:12629-12638.
[39] G. Lindblom et al (1981). Biochem. 17:2464-2468.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top