|
1. Akaike, H. (1973) Information theory and the maximum likelihood principle. In International Symposium on Information Theory. (V. Petrov and F. Csaki eds.). Akademiai Kiado, Budapest, 267-281. 2. Altman, N. (2000) Krige, smooth, both or neither? (with discussion). Australian & New Zealand Journal of Statistics, 42, 441-461. 3. Buja, A., Hastie, T., and Tibshirani, R. (1989) Linear smoothers and additive models (with discussion). The Annals of Statistics, 17, 453-555. 4. Cleveland, W. S, and Devlin, S. (1988) Locally weighted regression: an approach to regression analysis by local fitting. Journal of the American Statistical Association, 1988, 83, 596-610. 5. Cleveland, W. S. (1979) Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association, 74, 829-836. 6. Craven, P. and Wahba, G. (1979) Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation. Numerische Mathematik, 31, 377-403. 7. Cressie, N. (1990) Reply to a Letter by G. Wahba. The American Statistician, 44, 256-258. 8. Cressie, N. (1993) Statistics for Spatial Data (revised edition). Wiley: New York. 9. Cressie, N. and Lahiri, S. N. (1993) The asymptotic distribution of REML estimators. Journal of Multivariate Analysis, 45, 217-233. 10. Cressie, N. and Lahiri, S. N. (1996) Asymptotics for REML estimation of spatial covariance parameters. Journal of Statistical Planning and Inference, 50, 327-341. 11. Davis, B. M. (1987) Uses and abuses of cross-validation in geostatistics. Mathematical Geology, 19, 241-248. 12. Donoho, D. L. and Johnstone, I. M. (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81, 425-456. 13. Dubrule, O. (1983) Two methods with different objectives: splines and kriging. Mathematical Geology, 15, 245-257. 14. Durrett, R. (1995) Probability: Theory and Examples (second edition). Duxbury Press: Belmont. 15. Efron, B. (2001) Selection criteria for scatterplot smoothers. The Annals of Statistics, 29, 470-504. 16. Efron, B. (2004) The estimation of prediction error: covariance penalties and cross-validation. Journal of the American Statistical Association, 99, 619-632. 17. Eubank, R. (1999) Nonparametric Regression and Spline Smoothing (second edition). Marcel Dekker: New York. 18. Fan, J. and Gijbels, I. (1996) Local Polynomial Modelling and its Applications. Chapman and Hall: London. 19. George, E. I. and Foster, D. P. (1994) The risk inflation criterion for multiple regression. The Annals of Statistics, 22, 1947-1975. 20. Green, P. and Silverman, B. (1994) Nonparametric Regression and Generalized Linear Models. Chapman and Hall: London. 21. Gu, C. (2002) Smoothing Spline ANOVA Models. Springer: New York. 22. Hoeting, J. A., Davis, R. A., Merton, A. A., and Thompson, S. E. (2006) Model selection for geostatistical models. Ecological Applications, 16, 87-98. 23. Huber, P. T. (1981) Robust Statistics, Wiley: New York. 24. Hurvich, C., Simonoff, J., and Tsai, C. (1998) Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. Journal of the Royal Statistical Society, Series B, 60, 271-294. 25. Hutchinson, M. F. and Gessler, F. R. (1994) Splines---more than just a smooth interpolator. Geoderma, 62, 45-67. 26. Kohn, R., Ansley, C., and Tharm, D. (1991) The performance of cross-validation and maximum likelihooh estimators of spline smoothing parameters. Journal of the American Statistical Association, 86, 1042-1050. 27. Kou, S. C. (2003) On the efficiency of selection criteria in spline regression. Probability Theory and Related Fields, 127, 153-176. 28. Kou, S. C. (2004) From finite sample to asymptotics: a geometric bridge for selection criteria in spline regression. The Annals of Statistics, 32, 2444-2468. 29. Kou, S. C. and Efron, B. (2002) Smoothers and the Cp, generalized maximum likelihood, and extended exponential criteria: a geometric approach. Journal of the American Statistical Association, 97, 766-782. 30. Laslett, G. M. (1994) Kriging and splines: an empirical comparison of their predictive performance in some applications. Journal of the American Statistical Association, 89, 391-400. 31. Laslett, G. M. and McBratney, A. B. (1990) Further comparison of spatial methods for predicting soil pH. Journal of the Soil Science Society of America, 54, 1553-1558. 32. Laslett, G. M., McBratney, A. B., Pahl, P. J., and Hutchinson, M. F. (1987) Comparison of several spatial prediction methods for soil pH. Journal of Soil Science, 38, 325-341. 33. Lehmann, E. L. (1994) Testing Statistical Hypotheses (second edition). Chapman & Hall: New York. 34. Li, K. C. (1986) Asymptotic optimality of C_L and generalized cross-validation in ridge regression with application to spline smoothing. The Annals of Statistics, 14, 1101-1112. 35. Loader, C. (1999) Local Regression and Likelihood. Springer-Verlag: New York. 36. Mallows, C. (1973) Some comments on Cp. Technometrics, 15, 661-675. 37. Mardia, K. V. and Marshall, R. J. (1984) Maximum likelihood estimation of models for residual covariance in spatial regression. Biometrika, 71, 135-146. 38. Matern, B. (1986) Spatial Variation (second edition). Lecture Notes in Statistics, Springer: New York. 39. Matheron, G. (1963) Principles of geostatistics. Economic Geology, 58, 1246-1266. 40. Matheron, G. (1981) Splines and kriging: their formal equivalence. In Down-to-Earth Statistics: Solutions Looking for Geological Problems (D. F. Merriam ed.). Syracuse University Geological Contributions, Syracuse, 77-95. 41. McGilchrist, C. A. (1989) Bias of ML and REML estimators in regression models with ARMA errors. Journal of Statistical Computation and Simulation, 32, 127-136. 42. Miller, A. J. (1990) Subset Selection in Regression. Chapman and Hall: London. 43. Patterson, H. D. and Thompson, R. (1971) Recovery of inter-block information when block sizes are unequal. Biometrika, 58, 545-554. 44. Schabenberger, O. and Gotway, C. A. (2005) Statistical Methods for Spatial Data Analysis. Chapman & Hall/CRC: Boca Raton. 45. Schwarz, G. (1978) Estimating the dimension of a model. The Annals of Statistics, 6, 461-464. 46. Sen, A. and Srivastava, M. S. (1990) Regression Analysis Theory, Methods, and Applications. Springer-Verlag: New York. 47. Shen, X. and Huang, H.-C. (2006) Optimal model assessment, selection, and combination. Journal of the American Statistical Association, 101, 554-568. 48. Shen, X., Huang, H.-C., and Ye, J. (2004a) Comment on “The estimation of prediction error: covariance penalties and cross-validation” by B. Efron. Journal of the American Statistical Association, 99, 634-637. 49. Shen, X., Huang, H.-C., and Ye, J. (2004b) Adaptive model selection and assessment for exponential family models. Technometrics, 46, 306-317. 50. Shen, X. and Ye, J. (2002) Adaptive model selection. Journal of the American Statistical Association. 97, 210-221. 51. Stein, C. (1981) Estimation of the mean of a multivariate normal distribution. The Annals of Statistics. 9, 1135-1151. 52. Stein, M. L. (1999) Interpolation of Spatial Data. Springer: New York. 53. Stone, C. J. (1977) Consistent nonparametric regression (with discussion). The Annals of Statistics, 5, 595-645. 54. Stone, C. J. (1980) Optimal rates of convergence for nonparametric estimators. The Annals of Statistics, 8, 1348-1360. 55. Stone, C. J. (1982) Optimal global rates of convergence for nonparametric regression. The Annals of Statistics, 10, 1040-1053. 56. Voltz, M. and Webster, R. (1990) A comparison of kriging, cubic splines, and classification for predicting soil properties from sample information. Journal of Soil Science, 41, 473-490. 57. Wahba, G. (1985) A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem. The Annals of Statistics, 13, 1378-1402. 58. Wahba, G. (1990a) Spline Models for Observational Data. Society for Industrial and Applied Mathematics: Philadelphia. 59. Wahba, G. (1990b) Comment on Cressie. The American Statistician, 44, 255-256. 60. Wand, M. and Jones, M. C. (1995) Kernel Smoothing. Chapman and Hall: New York. 61. Wand, M. P. (2000) A comparison of regression spline smoothing procedures. Computational Statistics, 15, 443-462. 62. Wang, Y. (1998) Smoothing spline models with correlated random errors. Journal of the American Statistical Association, 93, 341-348. 63. Wecker, W. and Ansley, C. (1983) The signal extraction approach to nonlinear regression and spline smoothing. Journal of the American Statistical Association, 78, 81-89. 64. Ye, J. (1998) On measuring and correcting the effects of data mining and model selection. Journal of the American Statistical Association, 93, 120-131. 65. Zhang, C. (2003) Calibrating the degrees of freedom for automatic data smoothing and effective curve checking. Journal of the American Statistical Association, 98, 609-628. 66. Zhang, H. (2004) Inconsistent estimation and asymptotically equal interpolations in model-based geostatistics. Journal of the American Statistical Association, 99, 250-261. 67. Zhang, H. and Zimmerman, D. L. (2005) Toward reconciling two asymptotic frameworks in spatial statistics. Biometrika, 92, 921-936.
|