|
Chapter 1 References [1]S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. Part 2, 34, L797 (1995). [2]S. Nakamura, M. Senoh, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN multi-quantum-well-structure laser diodes with cleaved mirror cavity facets,” Jpn. J. Appl. Phys. Part 2, 35, L217 (1996). [3]M. A. Khan, J. N. Kuznia, D. T. Olson, J. M. Van Hove, M. Blasingame, and L. F. Reitz, “High-responsivity photoconductive ultraviolet sensors based on insulating single-crystal GaN epilayers,” Appl. Phys. Lett. 60, 2917 (1992). [4]M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Olson, “Metal semiconductor field effect transistor based on single crystal GaN,” Appl. Phys. Lett. 62, 1786 (1993). [5]M. A. Khan, A. R. Bhattarai, J. N. Kuznia, and D. T. Olson, “High electron mobility transistor based on a GaN-AlXGa1-XN heterojunction,” Appl. Phys. Lett. 63, 1214 (1993). [6]Y. F. Wu, D. Kapolnek, J. P. Ibbetson, P. Parikh, B. P. Keller, and U. K. Mishra, “Very-high power density AlGaN-GaN HEMTs,” IEEE Trans. Electron Devices 48, 586 (2001). [7]S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, and J. W. Palmour, “High power microwave GaN-AlGaN HEMTs on silicon carbide,” IEEE Electron Device Lett. 20, 161 (1999). [8]Z. Z. Bandic, P. M. Bridger, E. C. Piquette, T. C. McGill, R. P. Vaudo, V. M. Phanse and J. M. Redwing, “High voltage (450 V) GaN Schottky rectifiers,” Appl. Phys. Lett. 74, 1266 (1999). [9]R. Gaska, J. W. Yang, A. Osinsky, Q. Chen, M. A. Khan, A. O. Orlov, G. L. Snider and M. S. Shur, “Electron transport in AlGaN-GaN heterostructures grown on 6H-SiC substrates,” Appl. Phys. Lett 72, 707 (1998). [10]Seikoh Yoshida and Joe Suzuki, “High-temperature reliability of GaN metal semiconductor field-effect transistor and bipolar junction transistor,” J. Appl. Phys. 85, 7931 (1999). [11]L. S. McCarthy, P. Kozodoy, M. J. W. Rodwell, S. P. DenBaars and U. K. Mishra, “AlGaN/GaN heterojunction bipolar transistor,” IEEE Electron Device Lett. 20, 277 (1999). [12]L. S. McCarthy, I. P. Smorchkova, P. Fini, M. J. W. Rodwell, J. Speck, S. P. DenBaars and U. K. Mishra, “Small signal RF performance of AlGaN/GaN heterojunction bipolar transistor,” Electron Lett. 38, 144 (2002). [13]L. S. McCarthy, I. P. Smorchkova, H. Xing, P. Kozodoy, P. Fini, J. Limb, D. L. Pulfrey, J. S. Speck, M. J. W. Rodwell, S. P. DenBaars and U. K. Mishra, “GaN HBT: Toward an RF Device,” IEEE Trans. Electron Devices 48, 543 (2001). [14]L. McCarthy, I. Smorchkova, H. Xing, P. Fini, S. Keller, J. Speck, S. P. DenBaars, M. J. W. Rodwell and U. K. Mishra, “Effect of threading dislocations on AlGaN’GaN heterojunction bipolar transistors,” Appl. Phys. Lett. 78, 2235 (2001). [15]J. B. Limb, H. Xing, B. Moran, L. McCarthy, S. P. DenBaars, and U. K. Mishra, “High voltage operation (>80V) of GaN bipolar junction transistors with low leakage,” Appl. Phys. Lett. 76, 2457 (2000). [16]H. Xing, P. M. Chavarkar, S. Keller, S. P. DenBaars and U. K. Mishra, “Very high voltage operation (>330 V) with high current gain of AlGaN/GaN HBTs,” IEEE Electron Device Lett. 24, 141 (2003). [17]X. A. Cao, G. T. Dang, A. P. Zhang, F. Ren, J. M. Van Hove, J. J. Klaassen, C. J. Polley, A. M. Wowchak, P. P. Chow, D. J. King, C. R. Abernathy, and S. J. Pearton, “High current, common-base GaN/AlGaN heterojunction bipolar transistors,” Electrochemical and Solid-State Lett. 3, 144 (2000). [18]F. Ren, J. Han, R. Hickman, J. M. Van Hove, P. P. Chow, J. J. Klaassen, J. R. LaRoche, K. B. Jung, H. Cho, X. A. Cao, S. M. Donovan, R. F. Kopf, R. G. Wilson, A. G. Baca, R. J. Shul, L. Zhang, C. G. Willison, C. R. Abernathy, S. J. Pearton, “GaN/AlGaN HBT fabrication,” Solid-State Electron. 44, 239 (2000). [19]K. P. Lee, A. P. Zhang, G. Dang, F. Ren, J. Han, S. N. G. Chu, W. S. Hobson, J. Lopata, C. R. Abernathy, S. J. Pearton and J. W. Lee, “Self-aligned process for emitter- and base-regrowth GaN HBTs and BJTs,” Solid-State Electron. 45, 243 (2001). [20]J. J. Huang, M. Hattendorf, M. Feng, D. J. H. Lambert, B. S. Shelton, M. M. Wong, U. Chowdhury, T. G. Zhu, H. K. Kwon, and R. D. Dupuis, “Graded-emitter AlGaN/GaN heterojunction bipolar transistors,” Electron. Lett. 36, 1239 (2000). [21]B. S. Shellon, J. J. Huang, D. J. H. Lambert, T. G. Zhu, M. M. Wong, C. J. Eiting, H. K. Kwon, M. Feng and R. D. Dupuis, “AlGaN/GaN heterojunction bipolar transistors grown by metal organic chemical vapour deposition,” Electron. Lett. 36, 80 (2000). [22]J. J. Huang, M. Hattendorf, M. Feng, D. J. H. Lambert, B. S. Shelton, M. M. Wong, U. Chowdhury, T. G. Zhu, H. K. Kwon and R. D. Dupuis, “Temperature dependent common emitter current gain and collector-emitter offset voltage study in AlGaN/GaN heterojunction bipolar transistors,” IEEE Electron Device Lett. 22, 157 (2001). [23]B. S. Shelton, D. J. H. Lambert, J. J. Huang, M. M. Wong, U. Chowdhury, T. G. Zhu, H. K. Kwon, Z. Liliental-Weber, M. Benarama, M. Feng and R. D. Dupuis, “Selective area growth and characterization of AlGaN/GaN heterojunction bipolar transistors by metalorganic chemical vapor deposition,” IEEE Trans. Electron Devices, 48, 490 (2001). [24]T. Makimoto, K. Kumakura, and N. Kobayashi, “High current gains obtained by InGaN/GaN double heterojunction bipolar transistors with p-InGaN base,” Appl. Phys Lett. 79, 380 (2001). [25]K. Kumakura, T. Makimoto and N. Kobayashi, “Common-emitter current-voltage characteristic of a pnp GaN bipolar transistor,” Appl. Phys Lett. 80, 1225 (2002). [26]K. Kumakura, T. Makimoto and N. Kobayashi, “Common-emitter current-voltage characteristic of a pnp AlGaN/GaN heterojunction bipolar transistor with a low-resistance base layer,” Appl. Phys Lett. 80, 3841 (2002). [27]K. Kumakura and T. Makimoto, “High-voltage operation with high current gain of pnp AlGaN/GaN heterojunction bipolar transistors with thin n-type GaN base,” Appl. Phys Lett. 86, 023506 (2005). [28]T. Makimoto, K. Kumakura, and N. Kobayashi, “High current gain (>2000) of GaN/InGaN double heterojunction bipolar transistors using base regrowth of p-InGaN,” Appl. Phys Lett. 83, 1035 (2003). [29]T. Makimoto, Y. Yamauchi and K. Kumakura, “High-power characteristics of GaN/InGaN double heterojunction bipolar transistors,” Appl. Phys Lett. 84, 1964 (2004). [30]T. Makimoto, Y. Yamauchi, T. Kido, K. Kumakura, Y. Taniyasu, M. Kasu and N. Matsumoto, “Strained thick p-InGaN layers for GaN/InGaN heterojunction bipolar transistors on sapphire substrates,” Jpn. J. Appl. Phys. 44, 2722 (2005). [31]X. A. Cao, G. T. Dang, A. P. Zhang, F. Ren, C. R. Abernathy, S. J. Pearton, J. M. Van Hove, J. J. Klaassen, C. J. Polley, A. M. Wowchack, P. P. Chow, D. J. King, and S. N. G. Chu, “Common-Base Operation of GaN Bipolar Junction Transistors,” Electrochemical and Solid-State Lett. 3, 333 (2000). [32]T. Chung, J. Limb, D. Yoo, J. H. Ryou, W. Lee, S. C. Shen, R. D. Dupuis, B. Chu-Kung, M. Feng, D. M. Keogh and P. M. Asbeck, “Device operation of InGaN heterojunction bipolar transistors with a graded emitter-base design,” Appl. Phys Lett. 88, 183501 (2006). [33]D. M. Keogh, P. M. Asbeck, T. Chung, J. Limb, D. Yoo, J. H. Ryou, W. Lee, S. C. Shen and R. D. Dupuis, “High current gain InGaN/GaN HBTs with 300 C operating temperature,” Electron. Lett. 42, 661 (2006). [34]K. P. Hsueh, Y. M. Hsin, J. K. Sheu, W. C. Lai, C. J. Tun, C. H. Hsu and B. H. Lin, “Al0.17Ga0.83N/GaN heterojunction bipolar transistors fabricated by double mesa technology,” International Electronic Devices and Materials Symposium (IEDMS), Taiwan, R.O.C., Dec. 7-8, 2006.
Chapter 2 References [1]R. J. Trew, M. W. Shin, and V. Gatto, “High power applications for GaN-based devices,” Solid-State Electron., 41, 1561 (1997). [2]Y. F. Wu, D. Kapolnek, J. P. Ibbetson, P. Parikh, B. P. Keller, and U. K. Mishra, “Very-high power density AlGaN/GaN HEMTs,” IEEE Trans. Electron Devices, 48, 586 (2001). [3]X. A. Cao, G. T. Dang, A. P. Zhang, F. Ren, J. M. Van Hove, J. J. Klaassen, C. J. Polley, A. M. Wowchak, P. P. Chow, D. J. King, C. R. Abernathy, and S. J. Pearton, “High current, common-base GaN/AlGaN heterojunction bipolar transistors,” Electrochemical and Solid-State Lett. 3, 144 (2000). [4]J. Han, A. G. Baca, R. J. Shul, C. G. Willison, L. Zhang, F. Ren, A. P. Zhang, G. T. Dang, S. M. Donovan, X. A. Cao, H. Cho, K. B. Jung, C. R. Abernathy, S. J. Pearton, and R. G. Wilson, “Growth and fabrication of GaN/AlGaN heterojunction bipolar transistor,” Appl. Phys Lett. 74, 2702 (1999).
Chapter 3 References [1]S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys., Part 2, 34, L797 (1995). [2]S. Nakamura, M. Senoh, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN multi-quantum-well-structure laser diodes with cleaved mirror cavity facets” Jpn. J. Appl. Phys., Part 2, 35, L217 (1996). [3]M. A. Khan, J. N. Kuznia, D. T. Olson, J. M. Van Hove, M. Blasingame, and L. F. Reitz, “High-responsivity photoconductive ultraviolet sensors based on insulating single-crystal GaN epilayers,” Appl. Phys. Lett. 60, 2917 (1992). [4]M. A. Khan, J. N. Kuznia, A. R. Bhattarai and D. T. Olson, “Metal semiconductor field effect transistor based on single crystal GaN,” Appl. Phys. Lett. 62, 1786 (1993). [5]M. A. Khan, A. R. Bhattarai, J. N. Kuznia, and D. T. Olson, “High electron mobility transistor based on a GaN-AlXGa1-XN heterojunction,” Appl. Phys. Lett. 63, 1214 (1993). [6]H. Ishikawa, S. Kobayashi, Y. Koide, S. Yamasaki, S. Nagai, J. Umezaki, M. Koike, and M. Murakami, “Effects of surface treatments and metal work functions on electrical properties at p-GaN/metal interfaces,” J. Appl. Phys. 81, 1315 (1997). [7]J. L. Lee, M. Weber, J. K. Kim, J. W. Lee, Y. J. Park, T. Kim, and K. Lynn, “Ohmic contact formation mechanism of nonalloyed Pd contacts to p-type GaN observed by positron annihilation spectroscopy,” Appl. Phys Lett. 74, 2289 (1999). [8]C. B. Vartuli, S. J. Pearton, J. W. Lee, J. Hong, J. D. MacKenzie, C. R. Abernathy and R. J. Shul, “ICl/Ar electron cyclotron resonance plasma etching of III-V nitrides,” Appl. Phys Lett. 69, 1426 (1996). [9]C. C. Kao, H. W. Huang, J. Y. Tsai, C. C. Yu, C. F. Lin, H. C. Kuo and S. C. Wang, “Study of dry etching for GaN and InGaN-based laser structure using inductively coupled plasma reactive ion etching,” Materials Science and Engineering, B107, 283 (2004). [10]J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. C. Liu, C. M. Chang, and W. C. Hung, “Inductively coupled plasma etching of GaN using Cl2/Ar and Cl2/N2 gases,” J. Appl. Phys. 85, 1970 (1999). [11]C. C. Yu, C. F. Chu, J. Y. Tsai, H. W. Huang, T. H. Hsueh, C. F. Lin, and S. C. Wang, “Gallium nitride nanorods fabricated by inductively coupled plasma reactive ion etching,” Jpn. J. Appl. Phys., Part 2, 41, L910 (2002). [12]S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, “GaN: Processing, defects, and devices,” J. Appl. Phys. 86, 1 (1999). [13]R. J. Shul, C. G. Willison, M. M. Bridges, J. Han, J. W. Lee, S. J. Pearton, C. R. Abernathy, J. D. Mackenzie and, S. M. Donovan, “High-density plasma etch selectivity for the III–V nitrides,” Solid-State Electron. 42, 2269 (1998). [14]Veeco/DI NanoMan D3100CL, EnviroScope AFM, United States, NanoScope Software 6.0 User Guide (2003). [15]S. J. Pearton, F. Ren, A. P. Zhang, and K. P. Lee, “Fabrication and performance of GaN electronic devices,” Materials Science and Engineering, R30, 55 (2000). [16]X. A. Cao, S. J. Pearton, G. Dang, A. P. Zhang, F. Ren, and J. M. Van Hove, “Effects of interfacial oxides on Schottky barrier contacts to n- and p-type GaN,” Appl. Phys Lett. 75, 1430 (1999).
Chapter 4 References [1]S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. Part 2, 34, L797 (1995). [2]S. Nakamura, M. Senoh, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN multi-quantum-well-structure laser diodes with cleaved mirror cavity facets,” Jpn. J. Appl. Phys. Part 2, 35, L217 (1996). [3]M. A. Khan, J. N. Kuznia, D. T. Olson, J. M. Van Hove, M. Blasingame, and L. F. Reitz, “High-responsivity photoconductive ultraviolet sensors based on insulating single-crystal GaN epilayers,” Appl. Phys. Lett. 60, 2917 (1992). [4]M. A. Khan, A. R. Bhattarai, J. N. Kuznia, and D. T. Olson, “High electron mobility transistor based on a GaN-AlXGa1-XN heterojunction,” Appl. Phys. Lett. 63, 1214 (1993). [5]T. Makimoto, Y. Yamauchi and K. Kumakura, “High-power characteristics of GaN/InGaN double heterojunction bipolar transistors,” Appl. Phys Lett. 84, 1964 (2004). [6]F. Ren, J. Han, R. Hickman, J. M. Van Hove, P. P. Chow, J. J. Klaassen, J. R. LaRoche, K. B. Jung, H. Cho, X. A. Cao, S. M. Donovan, R. F. Kopf, R. G. Wilson, A. G. Baca, R. J. Shul, L. Zhang, C. G. Willison, C. R. Abernathy, S. J. Pearton, “GaN/AlGaN HBT fabrication,” Solid-State Electron. 44, 239 (2000). [7]L. S. McCarthy, I. P. Smorchkova, H. Xing, P. Kozodoy, P. Fini, J. Limb, D. L. Pulfrey, J. S. Speck, M. J. W. Rodwell, S. P. DenBaars and U. K. Mishra, “GaN HBT: Toward an RF Device,” IEEE Trans. Electron Devices 48, 543 (2001). [8]H. Ishikawa, S. Kobayashi, Y. Koide, S. Yamasaki, S. Nagai, J. Umezaki, M. Koike, and M. Murakami, “Effects of surface treatments and metal work functions on electrical properties at p-GaN/metal interfaces,” J. Appl. Phys. 81, 1315 (1997). [9]J. L. Lee, M. Weber, J. K. Kim, J. W. Lee, Y. J. Park, T. Kim, and K. Lynn, “Ohmic contact formation mechanism of nonalloyed Pd contacts to p-type GaN observed by positron annihilation spectroscopy,” Appl. Phys Lett. 74, 2289 (1999). [10]C. B. Vartuli, S. J. Pearton, J. W. Lee, J. Hong, J. D. MacKenzie, C. R. Abernathy and R. J. Shul, “ICl/Ar electron cyclotron resonance plasma etching of III-V nitrides,” Appl. Phys Lett. 69, 1426 (1996). [11]C. C. Kao, H. W. Huang, J. Y. Tsai, C. C. Yu, C. F. Lin, H. C. Kuo and S. C. Wang, “Study of dry etching for GaN and InGaN-based laser structure using inductively coupled plasma reactive ion etching,” Materials Science and Engineering, B107, 283 (2004). [12]J. M. Lee, K. M. Chang, S. W. Kim, C. Huh, I. H. Lee, and S. J. Park, “Dry etch damage in n-type GaN and its recovery by treatment with an N2 plasma,” J. Appl. Phys. 87, 7667 (2000). [13]Z. Mouffak, A. Bensaoula, L. Trombetta, “The effects of nitrogen plasma on reactive-ion etching induced damage in GaN,” J. Appl. Phys. 95, 727 (2004). [14]J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. C. Liu, C. M. Chang, and W. C. Hung, “Inductively coupled plasma etching of GaN using Cl2/Ar and Cl2/N2 gases,” J. Appl. Phys. 85, 1970 (1999). [15]T. Makimoto, K. Kumakura and N. Kobayashi, “Extrinsic base regrowth of p-InGaN for npn-type GaN/InGaN heterojunction bipolar transistors” Jpn. J. Appl. Phys. Part 1, 43, 4B, 1922 (2004). [16]K. Kumakura, T. Makimoto, and N. Kobayashi, “High hole concentrations in Mg-doped InGaN grown by MOVPE,” J. Cryst. Growth, 221, 267 (2000). [17]T. Gessmann, Y. L. Li, E. L. Waldron, J. W. Graff, E. F. Schubert, and J. K. Sheu, “Ohmic contacts to p-type GaN mediated by polarization fields in thin InXGa1-XN capping layers,” Appl. Phys Lett. 80, 986 (2002). [18]T. Mori, T. Kozawa, T. Ohwaki, Y. Taga, S. Nagai, S. Yamasaki, S. Asami, N. Shibata, and M. Koike, “Schottky barriers and contact resistances on p-type GaN,” Appl. Phys Lett. 69, 3537 (1996). [19]K. P. Hsueh, H. T. Hsu, C. M. Wang, S. C. Huang, Y. M. Hsin and J. K. Sheu, “Effect of Cl2/Ar dry etching on p-GaN with Ni/Au metallization characterization,” Appl. Phys. Lett. 87, 252107 (2005). [20]T. F. Huang, J. S. Harris and Jr., “Growth of epitaxial AlxGa1-xN films by pulsed laser deposition,” Appl. Phys. Lett. 72, 1158 (1998). [21]S. Pereira, M. R. Correia, E. Pereira, K. P. O''Donnell, E. Alves, A. D. Sequeira, N. Franco, I. M. Watson, and C. J. Deatcher, “Strain and composition distributions in wurtzite InGaN/GaN layers extracted from x-ray reciprocal space mapping,” Appl. Phys. Lett. 80, 3913 (2002). [22]S. J. Pearton, F. Ren, A. P. Zhang, and K. P. Lee, “Fabrication and performance of GaN electronic devices,” Materials Science and Engineering, R30, 55 (2000).
Chapter 5 References [1]R. J. Trew, M. W. Shin, and V. Gatto, “High power applications for GaN-based devices,” Solid-State Electron., 41, 1561 (1997). [2]Y. F. Wu, D. Kapolnek, J. P. Ibbetson, P. Parikh, B. P. Keller, and U. K. Mishra, “Very-high power density AlGaN/GaN HEMTs,” IEEE Trans. Electron Devices, 48, 586 (2001). [3]X. A. Cao, G. T. Dang, A. P. Zhang, F. Ren, J. M. Van Hove, J. J. Klaassen, C. J. Polley, A. M. Wowchak, P. P. Chow, D. J. King, C. R. Abernathy, and S. J. Pearton, “High current, common-base GaN/AlGaN heterojunction bipolar transistors,” Electrochemical and Solid-State Lett. 3, 144 (2000). [4]J. Han, A. G. Baca, R. J. Shul, C. G. Willison, L. Zhang, F. Ren, A. P. Zhang, G. T. Dang, S. M. Donovan, X. A. Cao, H. Cho, K. B. Jung, C. R. Abernathy, S. J. Pearton, and R. G. Wilson, “Growth and fabrication of GaN/AlGaN heterojunction bipolar transistor,” Appl. Phys Lett. 74, 2702 (1999). [5]L. S. McCarthy, I. P, Smorchkova, H. Xing, P. Kozodoy, P. Fini, J. Limb, D. L. Pulfrey, J. S. Speck, M. J. W. Rodwell, S. P. DenBaars and U. K. Mishra, “GaN HBT: toward and RF device,” IEEE Trans. Electron Devices, 48, 543 (2001). [6]F. Ren, J. Han, R. Hickman, J. M. Van Hove, P. P. Chow, J. J. Klaassen, J. R. LaRoche, K. B. Jung, H. Cho, X. A. Cao, S. M. Donovan, R. F. Kopf, R. G. Wilson, A. G. Baca, R. J. Shul, L. Zhang, C. G. Willison, C. R. Abernathy, S. J. Pearton, “GaN/AlGaN HBT fabrication,” Solid-State Electron., 44, 239 (2000). [7]H. Xing, D. S. Green, H. Yu, T. Mates, P. Kozodoy, S. Keller, S. P. DenBaars and U. K. Mishra, “Memory Effect and Redistribution of Mg into Sequentially Regrown GaN Layer by Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. Part 1 42, 50 (2003). [8]Naotaka Kuroda, Chiaki Sasaoka, Akitaka Kimura, Akira Usui, Yasunori Mochizuki, “Precise control of pn-junction profiles for GaN-based LD structures using GaN substrates with low dislocation densities,” J. Cryst. Growth 189/190, 551 (1998). [9]B. S. Shelton, D. J. H. Lambert, J. J. Huang, M. M. Wong, U. Chowdhury, T. G. Zhu, H. K. Kwon, Z. L. Weber, M. Benarama, M. Feng and R. D. Dupuis, “Selective area growth and characterization of AlGaN/GaN heterojunction bipolar transistors by metalorganic chemical vapor deposition,” IEEE Trans. Electron Devices, 48, 490 (2001). [10]L. McCarthy, I. Smorchkova, H. Xing, P. Fini, S. Keller, J. Speck, S. P. DenBaars, M. J. W. Rodwell and U. K. Mishra, “Effect of threading dislocations on AlGaN/GaN heterojunction bipolar transistors,” Appl. Phys Lett. 78, 2235 (2001). [11]J. K. Sheu, M. L. Lee and W. C. Lai, “Effect of low-temperature-grown GaN cap layer on reduced leakage current of GaN Schottky diodes,” Appl. Phys Lett. 86, 052103 (2005). [12]H. Xing et al., “Explanation of anomalously high current gain observed in GaN based bipolar transistors,” IEEE Electron Device Lett. 24, 4 (2003).
Chapter 6 References [1]T. Makimoto, K. Kumakura, and N. Kobayashi, “High current gain (>2000) of GaN/InGaN double heterojunction bipolar transistors using base regrowth of p-InGaN,” Appl. Phys Lett., vol.83, no. 5, pp. 1035-1037, 2003. [2]D. M. Keogh, P. M. Asbeck, T. Chung, J. Limb, D. Yoo, J. H. Ryou, W. Lee, S. C. Shen and R.D. Dupuis, “High current gain InGaN/GaN HBTs with 300C operating temperature,” Electron. Lett. 42, 661 (2006). [3]J. K. Sheu, J. J. Shiang, “III-N compound semiconductor bipolar transistor structure and method of manufacture,” United States Patent, Patent No.: US 6559482 B1. [4]L. S. McCarthy, I. P. Smorchkova, H. Xing, P. Kozodoy, P. Fini, J. Limb, D. L. Pulfrey, J. S. Speck, M. J. W. Rodwell, S. P. DenBaars and U. K. Mishra, “GaN HBT: Toward an RF Device,” IEEE Trans. Electron Devices 48, 543 (2001). [5]B. S. Shelton, D. J. H. Lambert, J. J. Huang, M. M. Wong, U. Chowdhury, T. G. Zhu, H. K. Kwon, Z. Liliental-Weber, M. Benarama, M. Feng and R. D. Dupuis, “Selective area growth and characterization of AlGaN/GaN heterojunction bipolar transistors by metalorganic chemical vapor deposition,” IEEE Trans. Electron Devices, 48, 490 (2001). [6]D. J. Rogers, F. Hosseini Teherani, A. Yasan, K. Minder, P. Kung and M. Razeghi, “Electroluminescence at 375 nm from a ZnO/GaN:Mg/c-Al2O3 heterojunction light emitting diode,” Appl. Phys Lett. 88, 141918 (2006). [7]Chun-Ju Tun, “Characteristics of p-type Contact on GaN-Based Light Emitting Devices,” Ph.D. dissertation, Department of Optical and Photonics, National Central University, (2005).
|