跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/09 11:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:薛光博
研究生(外文):Kuang-Po Hsueh
論文名稱:氮化鎵系列異質接面雙極性電晶體之研究
論文名稱(外文):Studies of GaN-Based Heterojunction Bipolar Transistors
指導教授:辛裕明
指導教授(外文):Yue-ming Hsin
學位類別:博士
校院名稱:國立中央大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:英文
論文頁數:121
中文關鍵詞:有機化學汽相沈積法異質接面雙載子電晶體氮化鎵氮化鋁鎵
外文關鍵詞:metalorganic chemical vapor depositionheterojunction bipolar transistorGaNAlGaN
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在最近幾年中,氮化鎵(GaN)系列材料在光電和電子元件的商業應用上,有相當大量的成長。以氮化鎵系列為材料的電晶體中,如氮化鋁鎵-氮化鎵(AlGaN/GaN)的高速電子遷移率電晶體,可以在惡劣和高溫度環境之下工作並提供高功率密度操作特性。然而,製作出以氮化鎵系列為材料的雙載子電晶體卻是非常困難的。這是因為以氮化鎵系列為材料的雙載子電晶體會有:(1)如同蕭基特性的基極接點;(2)低的基極傳導特性;(3)長晶缺陷和製程中所造成的高漏電流。因此,氮化鋁鎵-氮化鎵(AlGaN/GaN)的異質接面雙載子電晶體的研究是一項非常有挑戰性的研究題目。世界上少數著名的研究團隊,已經利用不同方法做出 n-p-n 或 p-n-p 的氮化鎵系列為材料的雙載子電晶體。提出如直接台面蝕刻法、基極重新成長法、射極重新成長法,和基極使用 p型的氮化銦鎵等方法,來製作氮化鎵系列為材料的雙載子電晶體。而本論文主要是在探討與發展氮化鋁鎵-氮化鎵的異質接面雙載子電晶體的製造技術和與它有關的議題。本論文的目標是利用直接台面蝕刻法,製造出氮化鋁鎵-氮化鎵的異質接面雙載子電晶體。
在第2章中,首先提出欲製作之氮化鋁鎵-氮化鎵(AlGaN/GaN)的異質接面雙載子電晶體結構。晶片是利用有機化學汽相沈積法(MOCVD)成長,使用的長晶基板是藍寶石,而射極鋁含量為0.17。在本章也介紹了利用直接台面蝕刻製程方法所製作出的氮化鋁鎵-氮化鎵異質接面雙載子電晶體之製程步驟,製作的電晶體之射極面積為75?75 ?m-2 。並對幾項重要的關鍵製程和會遇到的問題,做詳細的說明與解釋,其中的乾式蝕刻條件將在第3章報告。
在第3章中,首先研究p型氮化鎵的乾式蝕刻條件,作為製作氮化鋁鎵-氮化鎵的異質接面雙載子電晶體所用。此實驗是利用氯氣-氬氣混合氣體,研究在乾性蝕刻製程中對p型氮化鎵的影響。表面粗糙度之方均根和深度分佈比例被用來討論氮化鎵表面之特性。電流-電壓特性分析則是利用鎳(20奈米) / 金(20奈米) 之金屬,鍍在蝕刻後的p型氮化鎵上來量測。實驗結果說明了:在固定的蝕刻功率和腔體壓力之下,蝕刻速率不會隨著增加氯氣的流量而增加。由分析的資料看來,深度分佈比例對蝕刻條件的相關性,比表面粗糙度之方均根對蝕刻條件的相關性來的明顯。吾人利用表面粗糙度之方均根和深度分佈比例這兩種依據,可以找到最理想的蝕刻條件,來作為製造氮化鋁鎵-氮化鎵的異質接面雙載子電晶體的製程條件。
為了得到好的基極金屬接觸,一些發表之論文在製作氮化鋁鎵-氮化鎵的異質接面雙載子電晶體時,使用了基極重新成長的方法。在第4章中,做了相關的基極重新成長之實驗研究。利用p型氮化鋁銦鎵(AlInGaN)和氮化銦鎵(InGaN)作為重新成長之材料,重長在蝕刻過後的p型氮化鎵之上,並鍍上鎳(20奈米) / 金(20奈米),作為量測電流-電壓特性之金屬。p型氮化鋁銦鎵和氮化銦鎵是利用有機化學汽相沈積法重新成長的,成長的厚度是100奈米。從蕭基位障的特性來看,蝕刻後的p型氮化鎵蕭基位障是0.65 eV,重新成長p型氮化鋁銦鎵和p型氮化銦鎵之後,蕭基位障改善為0.56 eV和0.58 eV。除了蕭基位障分析之外,表面形態學和x光的頻譜分析在本章都有詳細之研究討論。
在第5章中,首先針對第2章提出的氮化鋁鎵-氮化鎵異質接面雙載子電晶體做相關之材料成長與物理特性分析,再對製作元件的特性做電性分析。首先,利用x光的分析頻譜與二次離子光譜對成長的材料進行物理分析。在x光的分析頻譜的交互空間分析中,可以證實此長晶的結構在晶格常數上是一致的,而不是一個疏鬆的長晶結構。雖然如此,由穿透式電子顯微鏡 (TEM)和蝕刻缺陷密度的測量,證實了線缺陷存在於此長晶晶片中。蝕刻缺陷密度的平均值是3.38 ? 108 cm-2。此外,在本章也介紹了利用直接台面蝕刻製程方法所製作出的氮化鋁鎵-氮化鎵的異質接面雙載子電晶體之元件特性分析,製作的電晶體之射極面積為75?75 ?m-2 。在Gummel Plot 特性曲線圖中,量測之電流增益高達1 ? 103以上,此不正常的高電流增益並非本質元件的特性,而是因為高的基極電阻與漏電流所造成的。電晶體在射極接地(common-emitter)的電流-電壓特性中,有較小的的位移電壓為2.04 V,其直流增益則是1.22,而調變直流增益則是1.32。最後,利用外加寄生元件的元件模型可以解釋分析,Gummel Plots 特性曲線圖所得到較高的電流增益是高的基極電阻與漏電流所造成的。
在最後結論中,整理了本論文所有的結果,並提供一些對未來研究有所幫助的建議,包含了:氮化銦鎵為基極之電晶體、平面結構的氮化鎵的接面雙載子電晶體和重新成長氧化鋅(ZnO)做射極之技術。
In recently years, the commercial outlook for GaN optoelectronic and electronic devices has grown considerably. GaN-based transistors, such as AlGaN/GaN high electron mobility transistors, are capable of delivering the high-power density under the harsh and high-temperature environments. However, it is difficult to fabricate working GaN-based HBTs due to the Schottky-like ohmic contacts on p-GaN, low base conductivity, and high leakage paths resulting from dislocations in materials and processing. Therefore, the research on an AlGaN/GaN HBT is one of the challenging research subjects. Different approaches have been utilized to obtain the n-p-n and p-n-p GaN-based HBTs such as direct mesa etch, base regrowth, emitter regrowth, and p-InGaN base. This dissertation is focused on efforts to develop fabrication technology for the GaN-based HBT and its related issues. The primary propose of this dissertation is to fabricate working AlGaN/GaN HBTs using the double mesa etching process.
In chapter 2, we present the design and growth of an AlGaN/GaN HBT. The proposed Al0.17Ga0.83N/GaN heterojunction bipolar transistor (HBT) was grown on c-face sapphire substrate by metalorganic chemical vapor deposition (MOCVD). Additionally, the fabricated Al0.17Ga0.83N/GaN n-p-n HBT with 75 x 75 um2 emitter area was demonstrated HBTs by direct mesa etching process. The details of the Al0.17Ga0.83N/GaN HBT fabrication are described in this chapter. Some of the important issues related to base layer and contact are discussed and discussed in detailed in the following chapters.
In chapter 3, the optimized etching process condition is studied for AlGaN/GaN HBTs. This chapter investigates the effect of Cl2/Ar dry etching on p-GaN. The root-mean-square (RMS) surface roughness is measured and depth display (Bearing analysis) is monitored. The current-voltage (I-V) characteristics of etched p-GaN with Ni (20 nm)/Au (20 nm) metallization are studied. Experimental results indicate that the etching rate does not increase significantly with the Cl2 flow rate at a constant power or chamber pressure. The Bearing ratio data exhibit a much stronger variation with etch conditions, the RMS displays the same trend but to a lesser extent. By the analysis of the RMS and the Bearing ratio, the optimal etching recipe is obtained and applied to the etching process of AlGaN/GaN HBTs.
In order to improve the base contacts after dry etching, base regrowth technique has been applied to fabricate GaN-based HBTs. In chapter 4, we use the regrown p-type AlInGaN and InGaN to decrease the base damage from the dry etching process. The p-type AlInGaN and InGaN contact layers are regrown on the etched p-GaN to study the Ni (20 nm)/Au (20 nm) contact current-voltage (I-V) characteristics. The thickness of the contact layer is 100 nm and regrown by metalorganic chemical vapor deposition. By using the regrown contact layer on etched p-GaN, Schottky barrier height (SBH) from the I-V characterization is reduced. The SBH of 0.65 eV from the contact to the etched p-GaN is reduced to 0.56 eV and 0.58 eV, respectively, after the AlInGaN and InGaN contact layers were formed. In addition to the I-V characterization of Ni/Au contacts, surface morphology and x-ray analysis are studied.
In chapter 5, the material properties of Al0.17Ga0.83N/GaN HBT presented in chapter 2 is investigated first. The epi-taxial layers are analyzed by x-ray diffraction pattern and secondary ion mass spectroscopy. The reciprocal space map verifies that the Al-content layer in emitter is a coherently strained structure. The threading dislocations are revealed by transmission electron microscopy (TEM) and etch pit density (EPD) measurement. The average value of the EPD is 3.38 x 108 cm-2. Additionally, the fabricated HBT with 75 x 75 um2 emitter area is demonstrated by direct mesa etching process. The measured gain exceeds 103 over the wide range of collector current in Gummel plots characteristic. In addition, the fabricated HBT with 75 x 75 um2 emitter area demonstrates a low offset voltage of 2.04 V and dc current gain of 1.22. The differential current gain is 1.32 in the common-emitter I-V characteristics. To analyze the device characteristics, a VBIC model for the intrinsic device and parasitic elements are used to implement an equivalent circuit model. From simulated results and fitting comparison, the high current gain in the Gummel plots is due to the extrinsic leakage current and poor base contact.
Finally, we summarize the results obtained in this dissertation and present some suggestions for further studies. The suggestions to fabricate GaN based HBT include the p-type InGaN base, the planar GaN bipolar transistors and the ZnO/InGaN HBTs using emitter regrowth.
Chapter 1 Introduction 1
1-1 Overview of GaN-based materials 1
1-2 Background of research on GaN HBTs 4
1-3 Overview of this dissertation 9
References 12
Chapter 2 Design and growth of AlGaN/GaN Heterojunction Bipolar Transistors 17
2.1 Introduction 17
2.2 Growth of AlGaN/GaN transistor structures 18
2.3 Device processing 20
2.3.1 Emitter mesa etching 21
2.3.2 The base and collector mesa etching 23
2.3.3 The base contact metal 23
2.3.4 The emitter and collector contact metals 24
2.3.5 The key technology of the process flow 27
2.4 Summary 30
References 31
Chapter 3 Optimum Dry Etching Conditions for p-GaN 32
3.1 Introduction 32
3.2 Experiment design 32
3.3 Varying the Cl2 flow rate 33
3.3.1 Surface morphology 34
3.3.2 The I-V characteristics 39
3.4 Varying the RF power 41
3.4.1 Surface morphology 41
3.4.2 The I-V characteristics 45
3.5 Summary 46
References 46
Chapter 4 Regrown Materials on p-GaN 49
4.1 Introduction 49
4.2 Experiment design 50
4.3 The results of the regrown the p-type materials for base contacts 51
4.3.1 Surface morphology 54
4.3.2 X-ray diffraction results 62
4.3.3 I-V characteristics 63
4.4 Summary 65
References 66
Chapter 5 Characterization of Al0.17Ga0.83N/GaN Heterojunction Bipolar Transistors 69
5.1 Introduction 69
5.2 The characteristic of the AlGaN/GaN epi-layer 70
5.2.1 X-ray diffraction results 70
5.2.2 SIMS results and analysis 73
5.2.3 TEM and EPD results 74
5.3 Device DC performance and analysis 76
5.3.1 Device DC performances 76
5.3.2 Device analysis 79
5.4 Summary 86
References 87
Chapter 6 Conclusions and Future Work 89
6.1 Conclusions of the dissertation 89
6.2 Future work for the GaN-based HBTs 90
6.2.1 The p-type InGaN base 91
6.2.2 The GaN-based planar BJT using implanted emitter or collector 92
6.2.3 The ZnO/InGaN HBTs using emitter regrowth 94
References 95
Appendix A Investigation of Cr- and Al-based metals for the reflector and Ohmic contact on n-GaN simultaneously in GaN flip-chip light-emitting diodes 97
Appendix B Temperature dependence of current-voltage characteristics of n-ZnO/p-GaN junction diodes 106
Publication List 118
Vita 121
Chapter 1
References
[1]S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. Part 2, 34, L797 (1995).
[2]S. Nakamura, M. Senoh, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN multi-quantum-well-structure laser diodes with cleaved mirror cavity facets,” Jpn. J. Appl. Phys. Part 2, 35, L217 (1996).
[3]M. A. Khan, J. N. Kuznia, D. T. Olson, J. M. Van Hove, M. Blasingame, and L. F. Reitz, “High-responsivity photoconductive ultraviolet sensors based on insulating single-crystal GaN epilayers,” Appl. Phys. Lett. 60, 2917 (1992).
[4]M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Olson, “Metal semiconductor field effect transistor based on single crystal GaN,” Appl. Phys. Lett. 62, 1786 (1993).
[5]M. A. Khan, A. R. Bhattarai, J. N. Kuznia, and D. T. Olson, “High electron mobility transistor based on a GaN-AlXGa1-XN heterojunction,” Appl. Phys. Lett. 63, 1214 (1993).
[6]Y. F. Wu, D. Kapolnek, J. P. Ibbetson, P. Parikh, B. P. Keller, and U. K. Mishra, “Very-high power density AlGaN-GaN HEMTs,” IEEE Trans. Electron Devices 48, 586 (2001).
[7]S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, and J. W. Palmour, “High power microwave GaN-AlGaN HEMTs on silicon carbide,” IEEE Electron Device Lett. 20, 161 (1999).
[8]Z. Z. Bandic, P. M. Bridger, E. C. Piquette, T. C. McGill, R. P. Vaudo, V. M. Phanse and J. M. Redwing, “High voltage (450 V) GaN Schottky rectifiers,” Appl. Phys. Lett. 74, 1266 (1999).
[9]R. Gaska, J. W. Yang, A. Osinsky, Q. Chen, M. A. Khan, A. O. Orlov, G. L. Snider and M. S. Shur, “Electron transport in AlGaN-GaN heterostructures grown on 6H-SiC substrates,” Appl. Phys. Lett 72, 707 (1998).
[10]Seikoh Yoshida and Joe Suzuki, “High-temperature reliability of GaN metal semiconductor field-effect transistor and bipolar junction transistor,” J. Appl. Phys. 85, 7931 (1999).
[11]L. S. McCarthy, P. Kozodoy, M. J. W. Rodwell, S. P. DenBaars and U. K. Mishra, “AlGaN/GaN heterojunction bipolar transistor,” IEEE Electron Device Lett. 20, 277 (1999).
[12]L. S. McCarthy, I. P. Smorchkova, P. Fini, M. J. W. Rodwell, J. Speck, S. P. DenBaars and U. K. Mishra, “Small signal RF performance of AlGaN/GaN heterojunction bipolar transistor,” Electron Lett. 38, 144 (2002).
[13]L. S. McCarthy, I. P. Smorchkova, H. Xing, P. Kozodoy, P. Fini, J. Limb, D. L. Pulfrey, J. S. Speck, M. J. W. Rodwell, S. P. DenBaars and U. K. Mishra, “GaN HBT: Toward an RF Device,” IEEE Trans. Electron Devices 48, 543 (2001).
[14]L. McCarthy, I. Smorchkova, H. Xing, P. Fini, S. Keller, J. Speck, S. P. DenBaars, M. J. W. Rodwell and U. K. Mishra, “Effect of threading dislocations on AlGaN’GaN heterojunction bipolar transistors,” Appl. Phys. Lett. 78, 2235 (2001).
[15]J. B. Limb, H. Xing, B. Moran, L. McCarthy, S. P. DenBaars, and U. K. Mishra, “High voltage operation (>80V) of GaN bipolar junction transistors with low leakage,” Appl. Phys. Lett. 76, 2457 (2000).
[16]H. Xing, P. M. Chavarkar, S. Keller, S. P. DenBaars and U. K. Mishra, “Very high voltage operation (>330 V) with high current gain of AlGaN/GaN HBTs,” IEEE Electron Device Lett. 24, 141 (2003).
[17]X. A. Cao, G. T. Dang, A. P. Zhang, F. Ren, J. M. Van Hove, J. J. Klaassen, C. J. Polley, A. M. Wowchak, P. P. Chow, D. J. King, C. R. Abernathy, and S. J. Pearton, “High current, common-base GaN/AlGaN heterojunction bipolar transistors,” Electrochemical and Solid-State Lett. 3, 144 (2000).
[18]F. Ren, J. Han, R. Hickman, J. M. Van Hove, P. P. Chow, J. J. Klaassen, J. R. LaRoche, K. B. Jung, H. Cho, X. A. Cao, S. M. Donovan, R. F. Kopf, R. G. Wilson, A. G. Baca, R. J. Shul, L. Zhang, C. G. Willison, C. R. Abernathy, S. J. Pearton, “GaN/AlGaN HBT fabrication,” Solid-State Electron. 44, 239 (2000).
[19]K. P. Lee, A. P. Zhang, G. Dang, F. Ren, J. Han, S. N. G. Chu, W. S. Hobson, J. Lopata, C. R. Abernathy, S. J. Pearton and J. W. Lee, “Self-aligned process for emitter- and base-regrowth GaN HBTs and BJTs,” Solid-State Electron. 45, 243 (2001).
[20]J. J. Huang, M. Hattendorf, M. Feng, D. J. H. Lambert, B. S. Shelton, M. M. Wong, U. Chowdhury, T. G. Zhu, H. K. Kwon, and R. D. Dupuis, “Graded-emitter AlGaN/GaN heterojunction bipolar transistors,” Electron. Lett. 36, 1239 (2000).
[21]B. S. Shellon, J. J. Huang, D. J. H. Lambert, T. G. Zhu, M. M. Wong, C. J. Eiting, H. K. Kwon, M. Feng and R. D. Dupuis, “AlGaN/GaN heterojunction bipolar transistors grown by metal organic chemical vapour deposition,” Electron. Lett. 36, 80 (2000).
[22]J. J. Huang, M. Hattendorf, M. Feng, D. J. H. Lambert, B. S. Shelton, M. M. Wong, U. Chowdhury, T. G. Zhu, H. K. Kwon and R. D. Dupuis, “Temperature dependent common emitter current gain and collector-emitter offset voltage study in AlGaN/GaN heterojunction bipolar transistors,” IEEE Electron Device Lett. 22, 157 (2001).
[23]B. S. Shelton, D. J. H. Lambert, J. J. Huang, M. M. Wong, U. Chowdhury, T. G. Zhu, H. K. Kwon, Z. Liliental-Weber, M. Benarama, M. Feng and R. D. Dupuis, “Selective area growth and characterization of AlGaN/GaN heterojunction bipolar transistors by metalorganic chemical vapor deposition,” IEEE Trans. Electron Devices, 48, 490 (2001).
[24]T. Makimoto, K. Kumakura, and N. Kobayashi, “High current gains obtained by InGaN/GaN double heterojunction bipolar transistors with p-InGaN base,” Appl. Phys Lett. 79, 380 (2001).
[25]K. Kumakura, T. Makimoto and N. Kobayashi, “Common-emitter current-voltage characteristic of a pnp GaN bipolar transistor,” Appl. Phys Lett. 80, 1225 (2002).
[26]K. Kumakura, T. Makimoto and N. Kobayashi, “Common-emitter current-voltage characteristic of a pnp AlGaN/GaN heterojunction bipolar transistor with a low-resistance base layer,” Appl. Phys Lett. 80, 3841 (2002).
[27]K. Kumakura and T. Makimoto, “High-voltage operation with high current gain of pnp AlGaN/GaN heterojunction bipolar transistors with thin n-type GaN base,” Appl. Phys Lett. 86, 023506 (2005).
[28]T. Makimoto, K. Kumakura, and N. Kobayashi, “High current gain (>2000) of GaN/InGaN double heterojunction bipolar transistors using base regrowth of p-InGaN,” Appl. Phys Lett. 83, 1035 (2003).
[29]T. Makimoto, Y. Yamauchi and K. Kumakura, “High-power characteristics of GaN/InGaN double heterojunction bipolar transistors,” Appl. Phys Lett. 84, 1964 (2004).
[30]T. Makimoto, Y. Yamauchi, T. Kido, K. Kumakura, Y. Taniyasu, M. Kasu and N. Matsumoto, “Strained thick p-InGaN layers for GaN/InGaN heterojunction bipolar transistors on sapphire substrates,” Jpn. J. Appl. Phys. 44, 2722 (2005).
[31]X. A. Cao, G. T. Dang, A. P. Zhang, F. Ren, C. R. Abernathy, S. J. Pearton, J. M. Van Hove, J. J. Klaassen, C. J. Polley, A. M. Wowchack, P. P. Chow, D. J. King, and S. N. G. Chu, “Common-Base Operation of GaN Bipolar Junction Transistors,” Electrochemical and Solid-State Lett. 3, 333 (2000).
[32]T. Chung, J. Limb, D. Yoo, J. H. Ryou, W. Lee, S. C. Shen, R. D. Dupuis, B. Chu-Kung, M. Feng, D. M. Keogh and P. M. Asbeck, “Device operation of InGaN heterojunction bipolar transistors with a graded emitter-base design,” Appl. Phys Lett. 88, 183501 (2006).
[33]D. M. Keogh, P. M. Asbeck, T. Chung, J. Limb, D. Yoo, J. H. Ryou, W. Lee, S. C. Shen and R. D. Dupuis, “High current gain InGaN/GaN HBTs with 300 C operating temperature,” Electron. Lett. 42, 661 (2006).
[34]K. P. Hsueh, Y. M. Hsin, J. K. Sheu, W. C. Lai, C. J. Tun, C. H. Hsu and B. H. Lin, “Al0.17Ga0.83N/GaN heterojunction bipolar transistors fabricated by double mesa technology,” International Electronic Devices and Materials Symposium (IEDMS), Taiwan, R.O.C., Dec. 7-8, 2006.

Chapter 2
References
[1]R. J. Trew, M. W. Shin, and V. Gatto, “High power applications for GaN-based devices,” Solid-State Electron., 41, 1561 (1997).
[2]Y. F. Wu, D. Kapolnek, J. P. Ibbetson, P. Parikh, B. P. Keller, and U. K. Mishra, “Very-high power density AlGaN/GaN HEMTs,” IEEE Trans. Electron Devices, 48, 586 (2001).
[3]X. A. Cao, G. T. Dang, A. P. Zhang, F. Ren, J. M. Van Hove, J. J. Klaassen, C. J. Polley, A. M. Wowchak, P. P. Chow, D. J. King, C. R. Abernathy, and S. J. Pearton, “High current, common-base GaN/AlGaN heterojunction bipolar transistors,” Electrochemical and Solid-State Lett. 3, 144 (2000).
[4]J. Han, A. G. Baca, R. J. Shul, C. G. Willison, L. Zhang, F. Ren, A. P. Zhang, G. T. Dang, S. M. Donovan, X. A. Cao, H. Cho, K. B. Jung, C. R. Abernathy, S. J. Pearton, and R. G. Wilson, “Growth and fabrication of GaN/AlGaN heterojunction bipolar transistor,” Appl. Phys Lett. 74, 2702 (1999).

Chapter 3
References
[1]S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys., Part 2, 34, L797 (1995).
[2]S. Nakamura, M. Senoh, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN multi-quantum-well-structure laser diodes with cleaved mirror cavity facets” Jpn. J. Appl. Phys., Part 2, 35, L217 (1996).
[3]M. A. Khan, J. N. Kuznia, D. T. Olson, J. M. Van Hove, M. Blasingame, and L. F. Reitz, “High-responsivity photoconductive ultraviolet sensors based on insulating single-crystal GaN epilayers,” Appl. Phys. Lett. 60, 2917 (1992).
[4]M. A. Khan, J. N. Kuznia, A. R. Bhattarai and D. T. Olson, “Metal semiconductor field effect transistor based on single crystal GaN,” Appl. Phys. Lett. 62, 1786 (1993).
[5]M. A. Khan, A. R. Bhattarai, J. N. Kuznia, and D. T. Olson, “High electron mobility transistor based on a GaN-AlXGa1-XN heterojunction,” Appl. Phys. Lett. 63, 1214 (1993).
[6]H. Ishikawa, S. Kobayashi, Y. Koide, S. Yamasaki, S. Nagai, J. Umezaki, M. Koike, and M. Murakami, “Effects of surface treatments and metal work functions on electrical properties at p-GaN/metal interfaces,” J. Appl. Phys. 81, 1315 (1997).
[7]J. L. Lee, M. Weber, J. K. Kim, J. W. Lee, Y. J. Park, T. Kim, and K. Lynn, “Ohmic contact formation mechanism of nonalloyed Pd contacts to p-type GaN observed by positron annihilation spectroscopy,” Appl. Phys Lett. 74, 2289 (1999).
[8]C. B. Vartuli, S. J. Pearton, J. W. Lee, J. Hong, J. D. MacKenzie, C. R. Abernathy and R. J. Shul, “ICl/Ar electron cyclotron resonance plasma etching of III-V nitrides,” Appl. Phys Lett. 69, 1426 (1996).
[9]C. C. Kao, H. W. Huang, J. Y. Tsai, C. C. Yu, C. F. Lin, H. C. Kuo and S. C. Wang, “Study of dry etching for GaN and InGaN-based laser structure using inductively coupled plasma reactive ion etching,” Materials Science and Engineering, B107, 283 (2004).
[10]J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. C. Liu, C. M. Chang, and W. C. Hung, “Inductively coupled plasma etching of GaN using Cl2/Ar and Cl2/N2 gases,” J. Appl. Phys. 85, 1970 (1999).
[11]C. C. Yu, C. F. Chu, J. Y. Tsai, H. W. Huang, T. H. Hsueh, C. F. Lin, and S. C. Wang, “Gallium nitride nanorods fabricated by inductively coupled plasma reactive ion etching,” Jpn. J. Appl. Phys., Part 2, 41, L910 (2002).
[12]S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, “GaN: Processing, defects, and devices,” J. Appl. Phys. 86, 1 (1999).
[13]R. J. Shul, C. G. Willison, M. M. Bridges, J. Han, J. W. Lee, S. J. Pearton, C. R. Abernathy, J. D. Mackenzie and, S. M. Donovan, “High-density plasma etch selectivity for the III–V nitrides,” Solid-State Electron. 42, 2269 (1998).
[14]Veeco/DI NanoMan D3100CL, EnviroScope AFM, United States, NanoScope Software 6.0 User Guide (2003).
[15]S. J. Pearton, F. Ren, A. P. Zhang, and K. P. Lee, “Fabrication and performance of GaN electronic devices,” Materials Science and Engineering, R30, 55 (2000).
[16]X. A. Cao, S. J. Pearton, G. Dang, A. P. Zhang, F. Ren, and J. M. Van Hove, “Effects of interfacial oxides on Schottky barrier contacts to n- and p-type GaN,” Appl. Phys Lett. 75, 1430 (1999).

Chapter 4
References
[1]S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. Part 2, 34, L797 (1995).
[2]S. Nakamura, M. Senoh, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN multi-quantum-well-structure laser diodes with cleaved mirror cavity facets,” Jpn. J. Appl. Phys. Part 2, 35, L217 (1996).
[3]M. A. Khan, J. N. Kuznia, D. T. Olson, J. M. Van Hove, M. Blasingame, and L. F. Reitz, “High-responsivity photoconductive ultraviolet sensors based on insulating single-crystal GaN epilayers,” Appl. Phys. Lett. 60, 2917 (1992).
[4]M. A. Khan, A. R. Bhattarai, J. N. Kuznia, and D. T. Olson, “High electron mobility transistor based on a GaN-AlXGa1-XN heterojunction,” Appl. Phys. Lett. 63, 1214 (1993).
[5]T. Makimoto, Y. Yamauchi and K. Kumakura, “High-power characteristics of GaN/InGaN double heterojunction bipolar transistors,” Appl. Phys Lett. 84, 1964 (2004).
[6]F. Ren, J. Han, R. Hickman, J. M. Van Hove, P. P. Chow, J. J. Klaassen, J. R. LaRoche, K. B. Jung, H. Cho, X. A. Cao, S. M. Donovan, R. F. Kopf, R. G. Wilson, A. G. Baca, R. J. Shul, L. Zhang, C. G. Willison, C. R. Abernathy, S. J. Pearton, “GaN/AlGaN HBT fabrication,” Solid-State Electron. 44, 239 (2000).
[7]L. S. McCarthy, I. P. Smorchkova, H. Xing, P. Kozodoy, P. Fini, J. Limb, D. L. Pulfrey, J. S. Speck, M. J. W. Rodwell, S. P. DenBaars and U. K. Mishra, “GaN HBT: Toward an RF Device,” IEEE Trans. Electron Devices 48, 543 (2001).
[8]H. Ishikawa, S. Kobayashi, Y. Koide, S. Yamasaki, S. Nagai, J. Umezaki, M. Koike, and M. Murakami, “Effects of surface treatments and metal work functions on electrical properties at p-GaN/metal interfaces,” J. Appl. Phys. 81, 1315 (1997).
[9]J. L. Lee, M. Weber, J. K. Kim, J. W. Lee, Y. J. Park, T. Kim, and K. Lynn, “Ohmic contact formation mechanism of nonalloyed Pd contacts to p-type GaN observed by positron annihilation spectroscopy,” Appl. Phys Lett. 74, 2289 (1999).
[10]C. B. Vartuli, S. J. Pearton, J. W. Lee, J. Hong, J. D. MacKenzie, C. R. Abernathy and R. J. Shul, “ICl/Ar electron cyclotron resonance plasma etching of III-V nitrides,” Appl. Phys Lett. 69, 1426 (1996).
[11]C. C. Kao, H. W. Huang, J. Y. Tsai, C. C. Yu, C. F. Lin, H. C. Kuo and S. C. Wang, “Study of dry etching for GaN and InGaN-based laser structure using inductively coupled plasma reactive ion etching,” Materials Science and Engineering, B107, 283 (2004).
[12]J. M. Lee, K. M. Chang, S. W. Kim, C. Huh, I. H. Lee, and S. J. Park, “Dry etch damage in n-type GaN and its recovery by treatment with an N2 plasma,” J. Appl. Phys. 87, 7667 (2000).
[13]Z. Mouffak, A. Bensaoula, L. Trombetta, “The effects of nitrogen plasma on reactive-ion etching induced damage in GaN,” J. Appl. Phys. 95, 727 (2004).
[14]J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. C. Liu, C. M. Chang, and W. C. Hung, “Inductively coupled plasma etching of GaN using Cl2/Ar and Cl2/N2 gases,” J. Appl. Phys. 85, 1970 (1999).
[15]T. Makimoto, K. Kumakura and N. Kobayashi, “Extrinsic base regrowth of p-InGaN for npn-type GaN/InGaN heterojunction bipolar transistors” Jpn. J. Appl. Phys. Part 1, 43, 4B, 1922 (2004).
[16]K. Kumakura, T. Makimoto, and N. Kobayashi, “High hole concentrations in Mg-doped InGaN grown by MOVPE,” J. Cryst. Growth, 221, 267 (2000).
[17]T. Gessmann, Y. L. Li, E. L. Waldron, J. W. Graff, E. F. Schubert, and J. K. Sheu, “Ohmic contacts to p-type GaN mediated by polarization fields in thin InXGa1-XN capping layers,” Appl. Phys Lett. 80, 986 (2002).
[18]T. Mori, T. Kozawa, T. Ohwaki, Y. Taga, S. Nagai, S. Yamasaki, S. Asami, N. Shibata, and M. Koike, “Schottky barriers and contact resistances on p-type GaN,” Appl. Phys Lett. 69, 3537 (1996).
[19]K. P. Hsueh, H. T. Hsu, C. M. Wang, S. C. Huang, Y. M. Hsin and J. K. Sheu, “Effect of Cl2/Ar dry etching on p-GaN with Ni/Au metallization characterization,” Appl. Phys. Lett. 87, 252107 (2005).
[20]T. F. Huang, J. S. Harris and Jr., “Growth of epitaxial AlxGa1-xN films by pulsed laser deposition,” Appl. Phys. Lett. 72, 1158 (1998).
[21]S. Pereira, M. R. Correia, E. Pereira, K. P. O''Donnell, E. Alves, A. D. Sequeira, N. Franco, I. M. Watson, and C. J. Deatcher, “Strain and composition distributions in wurtzite InGaN/GaN layers extracted from x-ray reciprocal space mapping,” Appl. Phys. Lett. 80, 3913 (2002).
[22]S. J. Pearton, F. Ren, A. P. Zhang, and K. P. Lee, “Fabrication and performance of GaN electronic devices,” Materials Science and Engineering, R30, 55 (2000).

Chapter 5
References
[1]R. J. Trew, M. W. Shin, and V. Gatto, “High power applications for GaN-based devices,” Solid-State Electron., 41, 1561 (1997).
[2]Y. F. Wu, D. Kapolnek, J. P. Ibbetson, P. Parikh, B. P. Keller, and U. K. Mishra, “Very-high power density AlGaN/GaN HEMTs,” IEEE Trans. Electron Devices, 48, 586 (2001).
[3]X. A. Cao, G. T. Dang, A. P. Zhang, F. Ren, J. M. Van Hove, J. J. Klaassen, C. J. Polley, A. M. Wowchak, P. P. Chow, D. J. King, C. R. Abernathy, and S. J. Pearton, “High current, common-base GaN/AlGaN heterojunction bipolar transistors,” Electrochemical and Solid-State Lett. 3, 144 (2000).
[4]J. Han, A. G. Baca, R. J. Shul, C. G. Willison, L. Zhang, F. Ren, A. P. Zhang, G. T. Dang, S. M. Donovan, X. A. Cao, H. Cho, K. B. Jung, C. R. Abernathy, S. J. Pearton, and R. G. Wilson, “Growth and fabrication of GaN/AlGaN heterojunction bipolar transistor,” Appl. Phys Lett. 74, 2702 (1999).
[5]L. S. McCarthy, I. P, Smorchkova, H. Xing, P. Kozodoy, P. Fini, J. Limb, D. L. Pulfrey, J. S. Speck, M. J. W. Rodwell, S. P. DenBaars and U. K. Mishra, “GaN HBT: toward and RF device,” IEEE Trans. Electron Devices, 48, 543 (2001).
[6]F. Ren, J. Han, R. Hickman, J. M. Van Hove, P. P. Chow, J. J. Klaassen, J. R. LaRoche, K. B. Jung, H. Cho, X. A. Cao, S. M. Donovan, R. F. Kopf, R. G. Wilson, A. G. Baca, R. J. Shul, L. Zhang, C. G. Willison, C. R. Abernathy, S. J. Pearton, “GaN/AlGaN HBT fabrication,” Solid-State Electron., 44, 239 (2000).
[7]H. Xing, D. S. Green, H. Yu, T. Mates, P. Kozodoy, S. Keller, S. P. DenBaars and U. K. Mishra, “Memory Effect and Redistribution of Mg into Sequentially Regrown GaN Layer by Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. Part 1 42, 50 (2003).
[8]Naotaka Kuroda, Chiaki Sasaoka, Akitaka Kimura, Akira Usui, Yasunori Mochizuki, “Precise control of pn-junction profiles for GaN-based LD structures using GaN substrates with low dislocation densities,” J. Cryst. Growth 189/190, 551 (1998).
[9]B. S. Shelton, D. J. H. Lambert, J. J. Huang, M. M. Wong, U. Chowdhury, T. G. Zhu, H. K. Kwon, Z. L. Weber, M. Benarama, M. Feng and R. D. Dupuis, “Selective area growth and characterization of AlGaN/GaN heterojunction bipolar transistors by metalorganic chemical vapor deposition,” IEEE Trans. Electron Devices, 48, 490 (2001).
[10]L. McCarthy, I. Smorchkova, H. Xing, P. Fini, S. Keller, J. Speck, S. P. DenBaars, M. J. W. Rodwell and U. K. Mishra, “Effect of threading dislocations on AlGaN/GaN heterojunction bipolar transistors,” Appl. Phys Lett. 78, 2235 (2001).
[11]J. K. Sheu, M. L. Lee and W. C. Lai, “Effect of low-temperature-grown GaN cap layer on reduced leakage current of GaN Schottky diodes,” Appl. Phys Lett. 86, 052103 (2005).
[12]H. Xing et al., “Explanation of anomalously high current gain observed in GaN based bipolar transistors,” IEEE Electron Device Lett. 24, 4 (2003).

Chapter 6
References
[1]T. Makimoto, K. Kumakura, and N. Kobayashi, “High current gain (>2000) of GaN/InGaN double heterojunction bipolar transistors using base regrowth of p-InGaN,” Appl. Phys Lett., vol.83, no. 5, pp. 1035-1037, 2003.
[2]D. M. Keogh, P. M. Asbeck, T. Chung, J. Limb, D. Yoo, J. H. Ryou, W. Lee, S. C. Shen and R.D. Dupuis, “High current gain InGaN/GaN HBTs with 300C operating temperature,” Electron. Lett. 42, 661 (2006).
[3]J. K. Sheu, J. J. Shiang, “III-N compound semiconductor bipolar transistor structure and method of manufacture,” United States Patent, Patent No.: US 6559482 B1.
[4]L. S. McCarthy, I. P. Smorchkova, H. Xing, P. Kozodoy, P. Fini, J. Limb, D. L. Pulfrey, J. S. Speck, M. J. W. Rodwell, S. P. DenBaars and U. K. Mishra, “GaN HBT: Toward an RF Device,” IEEE Trans. Electron Devices 48, 543 (2001).
[5]B. S. Shelton, D. J. H. Lambert, J. J. Huang, M. M. Wong, U. Chowdhury, T. G. Zhu, H. K. Kwon, Z. Liliental-Weber, M. Benarama, M. Feng and R. D. Dupuis, “Selective area growth and characterization of AlGaN/GaN heterojunction bipolar transistors by metalorganic chemical vapor deposition,” IEEE Trans. Electron Devices, 48, 490 (2001).
[6]D. J. Rogers, F. Hosseini Teherani, A. Yasan, K. Minder, P. Kung and M. Razeghi, “Electroluminescence at 375 nm from a ZnO/GaN:Mg/c-Al2O3 heterojunction light emitting diode,” Appl. Phys Lett. 88, 141918 (2006).
[7]Chun-Ju Tun, “Characteristics of p-type Contact on GaN-Based Light Emitting Devices,” Ph.D. dissertation, Department of Optical and Photonics, National Central University, (2005).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊