[1] B.H Juang, W. Hou, C.H Lee, “Minimum classification error rate methods for speech recognition:?IEEE Trans. on Speech and Audio Processing. vol. 5, pp. 257-265, May 1997.
[2] Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin, “A Practical Guide to Support Vector Classification?, abailable at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
[3] D. A. Reynolds and R. C. Rose, “Robust text independent speaker identification using Gaussian mixture speaker models,? IEEE Trans. on Speech and Audio Process., vol.3, no.1, pp.72–83, Jan. 1995.
[4] D. Reynolds and T. Quatieri, Speaker Verification Using Adapted Gaussian Mixture Models, in Digital Signal Processing A Review Journal, vol. 10, no. 1-3, pages19-41, Academic Press, 2000.
[5] G.R. Doddington: Speaker Recognition-Identifying People by Their Voices. Proceedings of IEEE, Vol. 73,
No. 11, 1986, pp. 1651-1644.
[6] Johan A.K. Suykens, Tony Van Gestel, Jos De Brabanter, Bart De Moor and Joos Vandewalle, Least Squares Support Vector Machines, World Scientific, 2002
[7] J. Kaiser, B. Horvat, Z. Kacic, “Overall Risk Criterion Estimation of Hidden Markov Model Parameters,? Speech Communication, Vol. 38, 2002, pp.383-398.
[8] J. L. Gauvain and C. H. Lee, “Maximum a Posteriori Estimation for Multivariate Gaussian Mixture Observations of Markov Chains,?IEEE Trans. Speech and Audio Processing, vol. 2, no. 2, pp. 291-298,April 1994.
[9] J. McDonough, T. Schaaf, A. Waibel, “On maximum mutual information speaker-adapted training? Acoustics, Speech, and Signal Processing, 2002. Proceedings. (ICASSP ''02). IEEE International Conference on Volume 1, 2002 Page(s):I-601 - I-604 vol.
[10] L. R. Rabiner and B. H. Juang, Fundamentals of Speech Recognition, Prentice Hall, New Jersey, 1993.
[11] L. Wang, P. Woodland, “MPE-based discriminative linear transform for speaker adaptation? Acoustics, Speech, and Signal Processing, 2004. Proceedings. (ICASSP ''04). IEEE International Conference on
[12] O. Siohan, A. E. Rosenberg, and S. Parthasarathy, “Speaker identification using minimum classification error training,? ICASSP-98, vol.1, pp.109–112, May 1998.
[13] R. Kuhn, J. C. Junqua, P. Nguyen and N. Niedzielski, “Rapid Speaker Adaptation in Eigenvoice Space,? IEEE Trans. Speech and Audio Processing, vol. 8, no. 6, pp. 695-707, November 2000.
[14] R. Vergin, D. O'' Shaughnessy and A. Farhat, “Generalized Mel Frequency Coefficients for Large-Vocabulary Speaker- Independent Continuous-Speech Recognition,? IEEE Trans. Speech and Audio Processing, vol. 7, no. 5, pp. 525-532,September 1999.
[15] T. E. Tremain. “The Government Standard Linear Predictive Coding Algorithm. ? Speech Technology (1982) 40--49.
[16] Tie Cai, Jie Zhu, “A novel Method for rapid speaker adaptation based on support speaker weighting?, Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP ''05). IEEE International Conference on Volume 1, March 18-23, 2005 Page(s):993 – 996
[17] T. K. Moon, "The Expectation Maximization. Algorithm", IEEE Signal processing magazine, Nov. 1996.
[18] V. Doumpiotis, W. Byrne, “Lattice Segmentation and Minimum Bayes Risk Discriminative Training for Large Vocabulary Continuous Speech Recognition,? to appear in Speech Communication.
[19] W. Chou, C.-H. Lee and B.-H. Juang, “Segmental GPD training of an hidden Markov model based speech
recognizer,? Proc. ICASSP-92, pp. 473–476.
[20] X. Huang, A. Acero and H. W. Hon, Spoken Language Processing, Prentice Hall, 2001.
[21] Y. Kida, H. Yamamoto, C. Miyajima, K. Tokuda, T Kitamura, , “Minimum Classification Error Interactive Training for Speaker Identification?, Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP ''05). IEEE International Conference on Volume 1, March 18-23, 2005 Page(s):641 – 644
[22] 賴彥輔, “語者辨識之研究? ,國立中央大學電機工程研究所碩士論文,民國九十二年。[23] 張文杰, “模型調適之語者辨識系統? ,國立中央大學電機工程研究所碩士論文,民國九十四年。[24] 李信廷, “改善最小錯誤鑑別式之語者辨認方法? ,國立中央大學電機工程研究所碩士論文,民國九十五年。