(3.239.33.139) 您好!臺灣時間:2021/03/05 18:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳岳毅
研究生(外文):Yueh-Yi Chen
論文名稱:以砷化鎵為基材在1060nm波段側向接面超螢光白光二極體
論文名稱(外文):GaAs-based transverse current injection light emitting diodes at the wavelength 1060nm
指導教授:許晉瑋許晉瑋引用關係
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:47
中文關鍵詞:側向接面超螢光發光二極體砷化鎵
外文關鍵詞:superluminescent diodeGaAstransverse junction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:122
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文裡,我們比較了側向p-n接面與一般垂直p-n接面元件之特性,一般的垂直接面發光二極體,在多重量子井中會有載子分佈不均勻的問題,可藉由側向接面元件消除,側向接面元件展現了穩定且平坦的光譜頻寬,在大偏壓電流操作下,3-dB頻寬為165nm,中心波長在1060nm附近,其3-dB頻寬對擴散深度及加入的偏壓電流不敏感,且頻寬有飽和之現象,此說明載子均勻分佈之重要性。
In this thesis, we compared performance of our demonstrated transverse p-n junction devices to those traditional vertical ones. The nonuniform carrier distribution problem that occurs in the multiple quantum wells (MQWs) of traditional vertical p-n junction LEDs can be totally eliminated by introducing a transverse p-n junction with MQWs combining with different emission wavelengths. These devices exhibit stable, flattened, and invariant broadband optical spectrum with maximum 3-dB bandwidth of 165nm around the wavelength of 1.06μm under a large bias current operation. The bandwidths of devices are not sensitive to diffusion depth and bias currents, revealing the improvement of uniform distribution of carriers.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 v
表目錄 vii
第一章 簡介 1
1-1 光學同調斷層攝影(Optical Coherence Tomography,OCT) 3
1-2 光學同調斷層攝影光源波長 5
第二章 理論 7
2-1 超螢光二極體基本考量 8
2-2 使用側向接面之目的 11
2-3 量子井設計 15
第三章 元件製程 18
第四章 量測結果與分析 25
4-1 不同擴散時間的發光二極體特性 26
4-2 側向接面雷射 31
第五章 結論 35
參考文獻 36
[1] Brett E. Bouma, Guillermo J. Tearney, Handbook of Optical Coherence Tomography, Marcel Dekker, INC.
[2] A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser,” Optical coherence tomography – principles and applications”, Rep. Prog. Phys., Vol. 66, pp. 239-303, 2003
[3] D.Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science, Vol. 254, pp.1178-1181, 1991.
[4] A. F. Fercher, E. Roth, “Ophthalmic laser interferometry,” Proceedings of SPIE, Vol. 658, pp. 48-51, 1986
[5] Carmen Puliafitomet al., Optical Coherence Tomography of Ocular Diseases, Slack Inc,1996
[6] Grrreats WS , “Ocular spectral characteristics as related to hazards from laser and other light sources”. Am J Ophthalmol, vol. 66 ,pp. 15-20, 1968
[7] Yimin Wang, J. Stuart Nelson, Zhongping Chen, “Optimal wavelength for ultrahigh-resolution optical coherence tomography,” Optics Express, vol. 11 , pp.1411-1417,2003
[8] R. C. Yougquist, S. Carr, and D. E. N. Davies, “Optical coherence-domain reflectomerty : a new optical evaluation technique,” Opt. Lett., vol. 12, pp. 158-160, 1987
[9] W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto,” In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett., Vol. 24, pp.1221-1223, 1999
[10] J. K. Ranka, R. S. Windeler, amd A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm”, Opt. Lett. Vol. 25, pp. 25-27, 2000
[11] I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, and J. G. Fujimoto, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett., Vol. 26, pp. 608-610, 2001
[12] J. M. Schmitt, S. L. Lee, and K. M. Yang, “Optical coherence microscope with enhanced resolving power in thick tissue”, Optics Communications., Vol. 142, pp. 203-207, 1997
[13] Carla C. Rosa, Vladimir Shidlovski, John A. Rogers, Richard B. Rosen , and Adrian Gh. Podoleanu, “Broadband SLD based source for retina investigations”, Proceedings of SPIE, Vol. 5690,pp. 540-547, 2005


[14] Vladimir Shidlovski, Jay Wei,”Superluminescent Diodes for Optical Coherence Tomography,” Proceedings of SPIE, Vol. 4648 , pp. 139-147, 2002
[15] C. F. Lin and B. L. Lee,”Extremely broadband AlGaAs/GaAs superluminescent diodes,” Appl. Phys. Lett., Vol. 71, pp.1598-1600, 1997
[16] C. E. Dimas, H. S. Djie and B. S. Ooi, “Superluminescent diodes using quantum dots superlattice”, J. Cryst. Growth, Vol. 288, pp.153-156, 2006
[17] H. S. Djie, C. E. Dimas, and B. S. Ooi, “Wideband quantum-dash-in-well superluminescent diode at 1.6um,” IEEE Photon. Technol. Lett., Vol. 18,pp. 1747-1749,2006
[18] M. L. Osowski, T. M. Cockerill, R. M. Lammert, D. V. Forbes, D. E. Ackley, and J. J. Coleman, “A strained layer InGaAs-GaAs-AlGaAs single quantum well broad spectrum LED by slective-area metalorganic chemical vapour deposition,” IEEE Photon Technol. Lett., Vol. 6, pp. 1289-1291, 1994
[19] B. S. Ooi, K. Mcllvaney, M. W. street, A. Helmy, S. G. Ayling, A. C. bryce, J. H. Marsh, and J. S. Roberts, “Selective quantum well intermixing in GaAs/AlGaAs structure using impurity-free vacancy diffusion,” IEEE J. Quantum Electron. , Vol. 33, pp. 1784-1793, 1997
[20] A. T. Semenov, V. K. Batovrin, I. A. Garmash, V. R. Shidlovsku, M. V. Shramenko, and S. D. Yakubovich,” (GaAl)As SQW superluminescent diodes with extremely coherence length,” Electron. Lett., Vol. 33, pp.315, 1995
[21] A. T. Semenov, L. A. Rivlin, S. D. Yakubovich, “Dynamics and spectra of semiconductor lasers”, J. Sov. Laser Research, Vol. 7, N 2, pp.57-206,1986
[22] N. S. K. kwong, K. Y. Lau, N. Bar-Chaim ,”High-power, high-efficiency GaAlAs superluminescent diode with integral absorber for lasing suppression.”, IEEE J. Quantum Electron.,QE-25,N 3,pp. 696-704, 1989
[23] B. D. Paterson, J. E. Epler, B. Graf, H. W. Lehmann, H. C. Sigg.,” A Superluminescent diodes at 1.3μm with very low spectral modulation.”, IEEE J. Quantum Electron., QE-30, N 3, pp.703-712, 1994
[24] A. T. Semenov, V. R. Shidlovski, S. A. Safin. , “Wide-spectrum SQW superluminescent diodes at 0.8μm with bent optical waveguide.”, Electron. Letts.,Vol. 29, N 10, pp.854-856, 1993
[25] T. Tokayama, O. Imafuji, Y. Koichi et al. , “100mW High-powe angle-stripe superluminescent diodes with new real refractive-index-guided self-aligned structure.”, IEEE Journal of Quantum Electron.,QE-32, N 11, pp. 1981-1987, 1996
[26] H. Yamazaki, A. Tomita, M. Yamaguchi, and Y. Sasaki, “Evidence of nonuniform carrier distribution in multiple quantum well lasers,” Appl. Phys. Lett., vol. 71, pp. 767–769, 1997.
[27] B.-L. Lee, C.-F. Lin, L.-W. Laih, andW. Lin , “Experimental evidence of nonuniform carrier distribution in multiple-quantum-well laser diodes,” Electron. Lett., vol. 34, pp. 1230–1231, 1998.
[28] C.-F. Lin, B.-R. Wu, L.-W. Laih, and T.-T. Shih, “Sequence influence of nonidentical InGaAsP quantum wells on broadband characteristics of semiconductor optical amplifiers/superluminescent diodes,” Opt. Lett., vol. 26, pp. 1099–1101, 2001.
[29] M. J. Hamp, D. T. Cassidy, B. J. Robinson, Q. C. Zhao, D. A. Thompson, and M. Davies, “Effect of barrier height on the uneven carrier distribution in asymmetric multiple-quantum-well InGaAsP lasers,” IEEE Photon. Technol. Lett., vol. 10, pp. 1380–1382, Oct. 1998.
[30] M. J. Hamp, D. T. Cassidy, B. J. Robinson, Q. C. Zhao, and D. A.Thompson, “Effect of barrier thickness on the carrier distribution in asymmetric multiple-quantum-well InGaAsP lasers,” IEEE Photon. Technol. Lett., vol. 12, pp. 134–136, Feb. 2000.
[31] C.-F. Lin, Y.-S. Su, C.-H. Wu, and G. S. Shmavonyan, “Influence of separate confinement heterostructure on emission bandwidth of InGaAsP superluminescent diodes/semiconductor optical amplifiers with nonidentical multiple quantum wells,” IEEE Photon. Technol. Lett., vol. 16, no. 6, pp. 1441–1443, Jun. 2004.
[32] Y. J. Yang, Y. C. Lo, G. S. Lee, K. Y. Hsieh, and R. M. Kolbas, “Transverse junction stripe laser with a lateral heterobarrier by diffusion enhanced alloy disordering,” Appl. Phys. Lett., vol. 49, pp. 835–837, Oct.1986.
[33] J. W. Shi, T. J. Hung, Y. Y. Chen. Y. S. Wu, Wei Lin, Ying Jay Yang, “InP-Based Transverse Junction Light-Emitting Diodes for White-Light Generation at Infrared Wavelengths,” IEEE Photon. Technol. Lett. Vol. 18, No. 19, 2006
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔