跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/08 05:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭中南
研究生(外文):Chung-nan Peng
論文名稱:Sn-3Ag-0.5Cu-XNi(X=0.0~0.1wt%)銲料迴銲後機械性質與電化學遷移之探討
論文名稱(外文):Mechanical property and Electrochemical Migration of the Sn-3Ag-0.5Cu-XNi(X=0.0~0.1 wt%) Reflowed on Cu-pads in various solution.
指導教授:林景崎
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:124
中文關鍵詞:電化學遷移銲料
外文關鍵詞:electrchemical migrationsolder
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文在探討四元無鉛銲料Sn-3Ag-0.5Cu-XNi(X=0.0~0.1)迴銲後之界面結構、機械性質以及電化學遷移行為。
由金相圖觀察得知,在Sn-3Ag-0.5Cu銲料中添加微量的鎳(0.005~0.1%),組織並沒什麼變化,但會讓Cu6Sn5與Cu3Sn變為(Cu,Ni)6Sn5與(Cu,Ni)3Sn,若鎳濃度增加,將會使較粗的介金屬化合物層變為較細的(Cu,Ni)6Sn5。
在錫球的ㄧ半(大約160μm)切面進行微硬度的量測,跟在錫球的1/4(大約80μm)的地方進行推球試驗ㄧ樣,發現微硬度(Hv)及推球強度(N)隨著鎳含量的增加並沒有什麼太大的改變,然而若在介金屬層附近的地方進行量測(大約15μm),則發現微硬度會隨著鎳含量的添加(0.005~0.1wt%)從23.12±0.21(Hv),上升到26.28±0.34(Hv),而推球強度則會從22.12±0.12 (N),上升到28.34±0.47 (N)。
在電化學遷移試驗方面,Sn-3Ag-0.5Cu-XNi(X=0.0~0.1)以250℃熱處裡迴銲在銅墊上,浸入逆滲透純水(導電度約10.6μS/cm)中,施加不同偏壓(2V,3V及5V),量測其電化學遷移時兩極間之電流,當電流急速上升造成兩極短路所耗費的時間,稱為電化學遷移時間(tm),比較此四元銲錫之電化學遷移時間(tm)顯示:當施加3V偏壓時,隨著銲料中鎳含量從0.0增加至0.1wt%,其電化學遷移時間(tm)從66秒縮短到28秒,但若與傳統錫鉛銲料相比,則Sn-3Ag-0.5Cu-XNi(X=0.0~0.1)仍優於傳統錫鉛。
由陽極動態及化曲線可以得知,隨著鎳含量的增加其陽極電流越大,顯示隨著鎳含量的增加,會促進陽極表面金屬離子的解離,與陰極表面金屬離子的還原。
The microstructure, mechanical properties and electrochemical migration for the Sn-3Ag-0.5Cu-XNi(X=0.0~0.1) lead-free solders reflowed on Cu-pads were investigated. Metallurgical observation indicated that a slight addition (0.005~0.100 wt%)of nickel in the Sn-3Ag-0.5Cu solder caused no marked change in the bulk microstructure but led to thicken the interlayer by formation of (Cu, Ni)6Sn5 on the (Cu, Ni)3Sn instead of Cu6Sn5 on Cu3Sn. The higher nickel concentration, the thicker is the intermetallic layer in which finer (Cu, Ni)6Sn5 distributed.
At the half-level (roughly 160 μm -height from the pad) and one fourth-level (about 80 μm -height from the pad) of the solder hemisphere, both the microhardness (Hv) and shear strength were almost invariant with increasing the addition of nickel. However, at the level near the intermetallic layer (with a height of 15 μm Cu-pad) the microhardness increased from 23.12±0.21(Hv) to 26.28±0.34(Hv) and the shear strength increases from 22.12±0.12 (N) to 28.34±0.47 (N) with increasing nickel from 0.005 to 0.100 wt%.
In the electrochemical migration test, a couple of conductors made of Sn-3Ag-0.5Cu-XNi(x=0.0~0.1) on Cu-pads annealed at 250℃ for 60 s was immersed in de-ionized water (with conductivity of 10.6μS/cm) exerted with 2, 3 and 5 V across the conductors. The duration of short circuit was defined as the migration time(tm) that was determined by a sudden rise of current. At a bias of 3 V, the magnitude of tm decreased from 66s to 28s with increasing the nickel content from 0 to 0.100 wt% in the solder. However, the resistance to migration is much better for Sn-3Ag-0.5Cu-XNi(X=0.0~0.1) solders than the traditional Sn-Pb one.
The anodic potentiodynamic polarization shows that the anodic current of Sn-3Ag-0.5Cu-XNi(X=0.0~0.1) solder increase with increasing nickel content in the solders. It implies that dissolution of metal contents from the anode and their re-deposition on cathode increases with increasing the nickel content.
摘要(中文) I
摘要(英文) III
致謝 Ⅳ
目錄 V
表目錄 XI
圖目錄 XII
第一章 前言 1
1.1 電子構裝相關知識介紹 1
1.2 晶片連接方式 5
1.3 無鉛銲錫的崛起 8
1.4 Sn-Ag-Cu合金銲料近年來發展優勢 11
1.5 研究動機與目的 13
第二章 文獻回顧與理論 15
2.1 電化學理論 15
2.1.1 金屬的遷移 15
2.2 各種元素的遷移反應 17
2.2.1 錫的電化學遷移 17
2.2.2 銀的電化學遷移 19
2.2.3 銅的電化學遷移 20
2.2.4 鎳的電化學遷移 21
2.3 合金的電化學遷移 23
2.3.1 合金的溶解 23
選擇性溶解(selective dissolution) 23
同時溶解(simultous dissolution) 23
2.4 無鉛銲錫中添加鎳元素之研究 24
第三章 實驗方法 25
3.1 實驗流程圖簡介 25
3.2 銅基板製備 25
3.2.1 選用電路板 25
3.2.2 製作光罩 26
3.2.3 洗電路板 26
3.2.4 剪裁 26
3.3 Sn-3Ag-0.5Cu無鉛銲料的製備 26
3.3.1 母合金的製作 26
(a) Sn-Cu 母合金熔煉 26
(b) Sn-Ni 母合金熔煉 27
3.3.2 Sn-3Ag-0.5Cu-xNi 無鉛銲料熔煉程序 27
3.3.3 澆鑄 27
3.3.4 檢測無鉛銲料成分 27
3.3.5 後段試片製作 28
(a)滾壓 28
(b) 剪切 28
3.4電化學實驗槽體製作 28
3.4.1電化學遷移實驗 29
3.4.2陽極動態極化掃描 29
3.4.3 陽極銲球之絕對反應電位量測 30
3.4.4推球試驗 30
3.4.5微硬度試驗 31
3.5儀器分析 32
3.5.1 感應耦合電漿質譜儀(ICP-MS Inductively Coupled Plasma Mass Spectrometer) 32
3.5.2光學顯微鏡(OM)觀察 32
3.5.3 掃描式電子顯微鏡(SEM)拍攝分析 33
第四章 結果 34
4.1 Sn-3Ag-0.5Cu-XNi(X=0.0~0.1wt%)迴銲後之金相觀察、結構分析與表面分析 34
4.1.1 Sn-3Ag-0.5Cu-XNi(X=0.0~0.1wt%)迴銲後之金相觀察 34
4.1.2 Sn-3Ag-0.5Cu-XNi(X=0.0~0.1wt%)迴銲後銲球與銅墊介面之SEM觀察與EDS分析 34
4.1.3 Sn-3Ag-0.5Cu-XNi(X=0.0~0.1wt%)迴銲後之FE-EPMA結果 35
4.1.4 EPMA之Color Mapping 分析 35
4.1.5 銲料迴銲完之微硬度結果 36
4.1.6 銲料迴銲完之推球結果 36
4.2 Sn-3Ag-0.5Cu-XNi(X=0.0~0.1)在水中之電化學遷移 37
4.2.1電化學遷移之短路電流量測 37
4.2.2 Sn-3Ag-0.5Cu-XNi(X=0.0~0.1)在不同偏壓(2V、3V、5V)下之曲線遷移電流與時間關係 37
4.2.3兩迴銲電極間析出物的觀察 38
4.3 Sn-3Ag-0.5Cu-XNi(X=0.0~0.1wt% )在導電度為50000μS/cm溶液中的電化學遷移 39
4.3.1 在不同偏壓下Sn-3Ag-0.5Cu-XNi(X=0.0~0.1)遷移電流與時間之關係 39
4.4 Sn-3Ag-0.5Cu-XNi(X=0.0~0.1wt% )在10.6µS/cm逆滲透純水中之極化分析 40
4.4.1 純金屬在導電度為10.6μs/cm逆滲透純水中之動態極化曲線分析 40
4.4.2 Sn-3Ag-0.5Cu-XNi(X=0.0~0.1wt% )在10.6µS/cm逆滲透純水中之陽極動態極化分析 40
4.4.3 相對電位量測 41
第五章 討論 42
5.1微結構與機械性質相關性 42
5.1.1迴銲後錫球中的金相 42
5.1.2迴銲後錫球中的介金屬化合物 43
5.1.3鎳含量對機械性質的影響 45
5.2 銲料之電化學行為探討 47
5.2.1 銲料在水中之電化學遷移行為 47
第六章 結論 52
第七章 參考文獻 54
[AND] I. E. Anderson, “Development of Sn–Ag–Cu and Sn–Ag–Cu–X alloys for Pb-free electronic solder applications”, Journal of Materials Science: Materials in Electronics, v 18, n 1-3, March, 2007, pp.55-76
.
[BAR] A. J. Bard, “Electrochemical Methods: Fundmentals and Applications”, John Wiley & sons, Inc., U. S. A., 1980, p.119.

[CAT] Catlow, C.R.A, “Defect processes and migration mechanisms in solid state ionics”, Materials Science & Engineering B: Solid-State Materials for Advanced Technology, v B12, n 4, Feb 29, 1992, pp.375-382.

[CHA] D. J. Chakrabarti, S. W. Chen, and Y. A. Chang, “Cu-Ni Phase Diagram”,Binary Alloy Phase Diagrams, (1991), 1444.

[CHA1] Y. A. Chang, D. Goldberg, J.P. Neumann, Journal of Physical and Chemical Reference Data, v 6-3, 1977, pp.621-624.

[CHE] G. M. Chen, G. Z. Jusheng, “Fabrication and properties of lead-free Sn-Ag-Cu-Ga solder alloy”, Materials Science Forum, v 475-479, 2005, pp.1747-1750.

[CHO] J, K. Choi, H. B. Kang, J. W. Lee, S. B. Jung, C. W. Yang, “A study on interfacial reaction between electroless plated Ni-P/Au UBM and Sn-Bi eutectic solder using AEM”, Materials Science Forum, v 449-452, n I, 2004, pp.405-408.

[CHO1] S. W. Cho, K. Han, Y. Yi, S. J. Kang, K. H. Yoo, K. Jeong, C. N. Whang, “Thermal oxidation study on lead-free solders of Sn-Ag-Cu and Sn-Ag-Cu-Ge”, Advanced Engineering Materials, v 8, n 1-2, February, 2006, pp.111-114.

[CHU] C. M. Chuang, K. L. Lin, “Effect of Microelement Addition on the Interfacial Reaction between Sn-Ag-Cu Solders and the Cu Substrate”, Journal of Electronic Materials, v 32, n 12, December, 2003, pp.1426-1431.

[CHU1] C. M. Chuang, P. C. Shih. K. L. Lin, 2002, Int’l Symposium on Electronic Materials and Package, pp.360-365.

[CIN] Y. Cindy, L. Kirk, A. Mark, C. Duc, N. Hai, “Single Chip RF Front-End MMIC Solutions for Future Low Cost, Miniature Size, WLAN Transceiver Module Applications”, Asia-Pacific Microwave Conference Proceedings, APMC, v 5.

[DAR] J. Darryl, L. Lawrence, “An Improved Leaded Small Outline Package and Equivalent Circuit”, IEEE Microwave and Wireless Components Letters, v 13, n 7, July, 2003, pp.273-275.

[DAS] A. Dasgupta, P. Sharma, “Micro-mechanics of fatigue damage in Pb-Sn solder due to vibration and thermal cycling” International Journal of Damage Mechanics, v 10, n 2, April, 2001, pp. 101-132.

[DAT1] M. Date, T. F, Shoji, K. M, Sato, K. N. Tu, “Ductile-to-brittle transition in Sn-Zn solder joints measured by impact test”, Scripta Materialia, v 51, n 7, October, 2004, pp. 641-645

[DAT2] M. Datta, IBM J. RES. Develop. v 37, 1993, n 2

[DAT3] M. Datta, “Anodic Dissolution of Metals at High Rates”, IBM J. RES. Develop. v 37, 1993, n 2.

[DEA] J. A. Dean, Lange’s Handbook of chemistry, 1974.

[EVE] D. Evelien, V.D. Sofie, Bart Vandevelde, Dominiek Degryse, Eric Beyne, Marcel Heerman, Jef Van Puymbroeck, “Parametric compact models dor 72-pins polymer stud grid array”, Microelectronics Joumal 32, 2001, pp.839-846.

[GAB] H. Gàbor, “Copper May Destroy Chip-Level Reliability:Handle with Care-Mechanism and Conditions for Copper Migrated Resistive Short Formation”, IEEE Electron Device Letters, v 20, n 1, January, 1999, pp.5-8.

[GEB] E. Gebhardt, G. Petzow, Zeitschrift fur Metallkunde, Bd. 50,1959, pp.597-605.

[GIE] W.C. Giessen, Bulletin of Alloy Phase Diagrams, v 1, 1980, pp.41-45.

[HAI] L. Haiying , A. Johnson, C. P. Wong, “Development of new no-flow underfill materials for both eutectic Sn-Pb solder and a high temperature melting lead-free solder”, IEEE Transactions on Components and Packaging Technologies, v 26, n 2, June, 2003, pp.466-472.

[HAN] C. R. Hanumanth, V. Jissy, A. Suresh, B.N. Baliga, “Dual metal core multilayer boards (MLBS) –a better option for high speed spacecraft electronic packaging applications”, Circuit World, v 32, n 2, 2006, pp.30-38.

[HID] N. Hidaka, M. Nagano, Megumi; M. W. Shimoda, O. M. Hirohiko, “Creep properties and microstructure of the Sn-Ag-Cu-Ni-Ge lead-free solder alloy” Advances in Electronic Packaging 2005, 2006, pp.1805-1810.

[HIR] S. Hirohiko, K. Shunji, M. Koichi, S. Eiichi, “Over-40-Gb/s IC Module Technology Using 8-mm-square Leadless Chip Camer Packages Mounted on Four-layer Resin Printed Circuit Boards”, Technical Digest - GaAs IC Symposium (Gallium Arsenide Integrated Circuit), 2001, pp.255-258.

[HIT] W. P. Hitesh, R. Markondeya, “Polymer-ceramic nanocomposite capacitors for system-on-package (SOP) applications” IEEE Transactions on Advanced Packaging, v 26, n 1, February, 2003, pp.10-16.

[HSU] H. F. Hsu, S. W. Chen, 2003, Journal of Electronic Materials,(In print).

[ISL] M.N. Islam, Y.C. Chan, “Wetting and interfacial reactions of Sn-Zn based lead-free solder alloys as replacement of Sn-Pb solder”, Proceeding of 2005 International Conference on Asian Green Electronics- Design for Manufacturability and Reliability, 2005AGEC, 2005, pp.178-184.

[ITO] M. Ito, K. Maruhashi, K. Ikuina, N. Senba, N. Takahashi, K. Ohata, “Low cost multi-layer ceramic package for flip-chip MMIC up to W-band”, IEEE MTT-S International Microwave Symposium Digest, v 1, 2000, pp.57-60.

[JAN] G. Y. Jang, J. G. Duh, “The effect of intel-metallic compound morphology on Cu diffusion in Sn-Ag and Sn-Pb solder bump on the Ni/Cu under-bump metallization”, Journal of Electronic Materials, v 34, n 1, January, 2005, pp.68-79.

[JAN1] S. Janusz, “Advantages of the Wetting balance Method for new lead-free materials evaluation”, Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, v 16, n 11, November, 2006, pp.1908-1912.

[JEO] J. W. Yoon, Y. H. Lee, D. G. Kim, H. B. Kang, S. J. Suh, C. W. Yang, C. B. Lee, J. M. Jung, C. S. Yoo, “Intermetallic compound layer growth at the interface between Sn–Cu–Ni solder and Cu substrate”, Journal of Alloys and Compounds, v 381,2001, pp.151–157.

[JON] W. K. Jones, Y. G. Liu, “Study on mechanical properties of eutectic and solid solution Pb-Sn-Ag solders from -200 °C to 150 °C”, TMS Annual Meeting, Design Reliability of Solders and Soder Interconnections, 1997, pp.85-96.

[KAN] C. M. Kanchanomai, M. Y. Yukio, Mutoh, “Low-cycle fatigue behavior of Sn-Ag, Sn-Ag-Cu, and Sn-Ag-Cu-Bi lead-free solders”, Journal of Electronic Materials, v 31, n 5, May, 2002, pp. 456-465

[KAO] S. T. Kao, Y. C. Lin, J. G. Duh, “Controlling intermetallic compound growth in SnAgCu/Ni-P solder joints by nanosized Cu6Sn5 addition”, Journal of Electronic Materials, v 35, n 3, March, 2006, pp.486-493.

[KAR] I. Karakaya, W. T. Thompson, “Ag-Sn Phase Diagram”, Binary Alloy Phase Diagrams, 1987, p.96.

[KEE] T. R. Keen, D. S. Ko, R. L. Slingerland, Riedlinger, F. P. Shelley, “Potential transport pathways of terrigenous material in the Gulf of Papua”, Geophysical Research Letters, v 33, n 4, Feb 28, 2006, p L04608

[KEN] O. Kenji. M. Takahiko and H. Kohji, “Copper Ion Migration in Insulated Metal Substrates”, Fuji Electric Corporate Research & Development, Ltd, 1995, pp.659-663.

[KHO] Y. L. Khong, H. L. Lee, “Chemical Imaging of Micro-vias in Flip Chip Pin Grid Array packages using Time-of-Flight Secondary-lon-Mass-Spectroscopy”, Proceedings of SPIE - The International Society for Optical Engineering, v 4828, 2002, pp. 243-248.

[KIM] K.S. Kim, S.H. Huh, K. Suganuma, Microelectronics Reliability v 43, 2003, pp.259–267.

[KIM1] K. S. Kim, S.H. Huh, K. Suganuma, “Effect of Intermetallic Compounds on Properties of Sn-Ag-Cu Lead-Free Soldered Joints”, Journal of Alloys and Compounds, 352, 2003, pp.226-236

[KRU] S. J. Krumbein, “Metallic Electromigration Phenomena”, IEEE Transactions on Component, Hybrids, and Manufacturing Technology, v 11, 1988, pp.5-14.

[LAU] J. H. Lau, “Low Cost Flip Chip Technologies for DCA, WLCSP, and PBGA Assemblies”, McGraw-Hill,2000.

[LAU1] T. Laurila, V. Vuorinen, J. K. Kivilahti, “Interfacial Reaction Between Lead-Free Solders and Common Base Materials”, Materials Science and Engineering R 49, 2005, pp.1-60.

[LIN] J. C. Lin, J. Y. Chuang, “Resistance to silver electrolytic migration for thick-film conductors prepared from mixed and alloyed powders of Ag-15Pd and Ag-30Pd”, Journal of the Electrochemical Society, v 144, n 5, May, 1997, pp.1652-1659.

[LIN1] C. H. Lin, S. W. Chen, C. H. Wang, Journal of Electronic Materials, Vol.31, p907-915(2002)

[LIU] W. Liu, Y. Lin, G. S. Frank, “Welding Induced Alignment Distortion in DIP LD Packages: Effect of Laser Welding Sequence”, Proceedings of SPIE - The International Society for Optical Engineering, v 4652, 2002, pp.128-135.

[LIU1] Y. Q. Liu, W. K. Jones, “Mechanical properties of Pb/Sn Pb/In and Sn-In solders”, National Electronic Packaging and Production Conference-Proceedings of the Technical Program (West and East), v 2, 1997, pp.719-726.

[LIU2] P. L. Liu, J. K. Shang, “Influence of Microstructure on Fatigue Crack Growth Behavior of Sn-Ag Solder Interfaces”, Journal of Electronic Materials, v 29. n 5, 2000, pp.622-627.

[LOO] M. E. Loomans, M. E. Fine, “Metallurgical and Materials Transaction A”, v 31A, April 2000, pp.1155-1162.

[MIA] H. W. Miao, J. G. Duh, B. S. Chiou, “Thermal cycling test in Sn-Bi and Sn-Bi-Cu solder joints”, Journal of Materials Science: Materials in Electronics, v 11, n 8, Nov, 2000, pp.609-618.

[NAS] P. Nash, A. Nash, “Ni-Sn Phase Diagram”, Binary Alloy Phase Diagrams, 1991, p.2864.

[OFF] Official Journal of the European Union, 2003, pp.13.2, L 37/19~L 37/23. “Roadmap 2002 for Commercialization of Lead-free Solder”, Official version

[PAR] L. Paresh, V. H. Bart, D. D. deVries2, S. C. Kees, “Finite Element Analysis of Ultra Thin BGA Package: First and Second Level Reliability”, Proceedings of the 5th International Conference on Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems, pp.225-231.

[PIC] H. W. Pickering, “Characteristic Features of Alloy Polarization Curves”, Corrosion Science, v 23, n 10, 1983, pp 1107-1120.

[POU] M. Pourbaix, “Corrosion du fer par les solutions de soude caustique [Thesis, Brussels, 1945 (exact)]”, Bull. Techn. A. I. Br, 1946, pp.67-86, 1947, pp.109-120.

[POU1] M. Pourbaix, Atlas of Electrochemical Equilibria in A1ueous Solutions, Pergamon Press, Oxford, 1966, pp.384-392.

[POU2] M. Pourbaix, Atlas of Electrochemical Equilibria in A1ueous Solutions, Pergamon Press, Oxford, 1966, pp.393-405.

[POU3] M. Pourbaix, “Atlas of Electrochemical Equilibria in Aqueous Solutions”, Pergamon Press, Oxford, 1966, pp.384-389.

[POU4] M. Pourbaix, “Atlas of Electrochemical Equilibria in Aqueous Solutions”, Pergamon Press, Oxford, 1966, pp.330-334.

[REE] R.E.Reed-Hill, R. Abbaschian, Physical Metallurgy Principles, PWS Publishing Commany, Boston, 1994

[RIE] D. E. Riemer, IEEE, Trans. Comp. Hybrids, Manuf. Technol,1982, p220-228.

[ROT] V. Rothmund, “Ueber den Einfluss der Anionen auf die Passivierbarkeit der Metalle”, Z. Physics and Chemistry, v 110, 1924, pp.384-392.

[SAU] N. Saunders, A. P. Miodownik, “Cu-Sn Phase Diagram”, Binary Alloy Phase Diagrams, 1990, 1482.

[SER] M. Seruga, M. Metikos-Hukovic, T. Valla, M. Milun, H. Hoffschultz, K. Wandelt, Journal of Electroanalytical Chemistry, vol 407, 1996, pp.83-89.

[SHA] A. Sharif, Y. C. Chan, “Effect of substrate metallization on interfacial reactions and reliability of Sn-Zn-Bi solder joints”, Microelectronic Engineering, v 84, n 2, February, 2007, VLSI Design and Test, pp. 328-335

[SHE] G. J. Shen, H. X. Liu, Y. C. Wei, Chen; Y. Q. Yang, “Effect of cooling rates on the microstructure and mechanical behavior of Sn-Ag solder”, Gongneng Cailiao/Journal of Functional Materials, v 36, n 1, January, 2005, pp.47-49

[SHI] L. B. Shi, L. Y. Yaowu, X. F. Guo, Z. B. Zhidong, “Effect of rare earth element addition on the microstructure of Sn-Ag-Cu solder joint”, Journal of Electronic Materials, v 34, n 3, March, 2005, pp. 217-224

[SHU] M. S. Suh, Y. J. Lee, “Hierarchical expert system for integrated scheduling of ship berthing, discharging and material transport”, Expert Systems, v 15, n 4, Nov, 1998, pp. 247-255

[SIN] M. Singleton, P. Nash, “Ag-Ni Phase Diagram”, Binary Alloy Phase Diagrams, 1991, p.65.

[SON] J. M. Song, C. F. Huang, H. Y. Chuang, “Microstructural characteristics and vibration fracture properties of Sn-Ag-Cu-TM (TM = Co, Ni, and Zn) alloys”, Journal of Electronic Materials, v 35, n 12, December, 2006, pp.2154-2163.

[TOM] L.Y. Tommi, H. Steen, A. Forsten, “Development and Validation of a Lead-Free Alloys for Solder Paste Applications”, IEEE Transaction on Components, Packaging, and Manufacturing Technology-Part C, v 20, n 3, July 1997, pp.194-198.

[TRU] B.Trumble, “IEEE Spectrum”,(May,1998)

[TZY] S. H. Tzyy, S. M. Wu, C. T. Chiu, C. P. Hung, “Electrical Performance Improvements on RFICs Using Bump Chip Carrier Packages as Compared to Standard Thin Shrink Small Outline Packages”, IEEE Transactions on Advanced Packaging, v 24, n 4, November, 2001.

[VAN] J. A. van Beek, S. A. Stolk, F. J. J. van Loo, Zeitschrift fur Metallkunde, v 73, 1982, pp.439-444.

[VOL] L. M. Voltchkova, L. G. Antonova and A. J. Krasilschikov, “Comportement Anoidique du Nickel dans les Solutions Alcalines”, J. Fiz. Khim. v 23, 1949, pp.714-718.

[WHI] M. Whitney, S. F. Corbin, “Lead contamination of a transient liquid-phase-processed Sn-Bi lead-free solder paste”, Journal of Electronic Materials, v 35, n 2, February, 2006, pp.284-291.

[WU] 吳惟, 國立中央大學機械工程學系碩士論文

[YAM] Yamabe, Mitsuharu, “Estimation of Sn-3.0Ag-0.5Cu Solder Joint Reliability by Weibull Distribution and Modified Coffin-Manson Equation”, Proceedings of SPIE - The International Society for Optical Engineering, v 5288, 2003, International Symposium on Microelectronics, 2003, pp.823-828.

[YOO] J. W. Yoon, S. W. Kim, S. B. Jung, Seung-Boo, “IMC morphology, interfacial reaction and joint reliability of Pb-free Sn-Ag-Cu solder on electrolytic Ni BGA substrate”, Journal of Alloys and Compounds, v 392, n 1-2, Apr 19, 2005, pp.247-252.

[YOO1] J. W. Yoon, S. W. Kim, J. A. Koo, D. G. Kim, S. B. Jung, “Reliability investigation and interfacial reaction of ball-grid-array packages using the lead-free Sn-Cu solder”, Journal of Electronic Materials, v 33, n 10, October, 2004, pp. 1190-1199.

[YOO2] Yoon, Jeong-Won, Moon, Won-Chul, Jung, Seung-Boo, “Interfacial reaction of ENIG/Sn-Ag-Cu/ENIG sandwich solder joint during isothermal aging”, Microelectronic Engineering, v 83, n 11-12, November/December, 2006, pp.2329-2334.

[YOU] B. K. Young, N. Hiroshi, A. Masazumi, “Vibration fatigue reliability of BGA-IC package with Pb-free solder and Pb–Sn solder”, Microelectronics Reliability v 46 , 2006, pp.459–466

[YOU1] C.C. YOUNG, J.G. DUH, S.Y. TSAI, “Microstructural Evolution in the Sn-Cu-Ni and Pb-Sn Solder Joints with Cu and Pt-Ag Metallized Al2O3 Substrate”, Journal of Electronic Materials, v 30,n 9, 2001.

[ZHO] J. S. Zhou, X. F. Yangshan, “Properties of low melting point Sn-Zn-Bi solders”, Journal of Alloys and Compounds, v 397, n 1-2, Jul 19, 2005, pp. 260-264.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top