(3.239.192.241) 您好!臺灣時間:2021/03/02 13:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:羅偉僑
研究生(外文):Wei-chiao Lo
論文名稱:以分層式流體化活性碳床吸附戴奧辛之初步研究
指導教授:張木彬
學位類別:碩士
校院名稱:國立中央大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:112
中文關鍵詞:戴奧辛前驅物質(氯酚)分層式流體化床反應器球狀活性碳戴奧辛
外文關鍵詞:PCDD/Fmultiple layers fluidized bed reactorbead-shaped activated carbonprecursor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:157
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
戴奧辛呋喃(PCDD/F)污染在最近年來已成為全世界最重要的環境問題之一,尤其戴奧辛之毒性高且最引人注目,因此世界各國均制定更嚴格之排放標準及最佳控制技術來加以限制戴奧辛的排放及生成。本研究以集塵灰高溫冶煉廠(Waelz process)之萃取液(正壬烷溶液),作為本研究之進流戴奧辛,以模擬Waelz process戴奧辛之排放特性,選擇以球狀活性碳為實驗之床質吸附劑,並結合分層式流體化床反應器評估在不同氣流流量、操作溫度及水氣含量條件下對戴奧辛吸附效能及戴奧辛前驅物質(氯酚)生成戴奧辛之潛勢及影響。
戴奧辛吸附效率方面,研究結果指出不論在氣流流量、操作溫度及水氣含量條件下,戴奧辛氣流通過第3層時,去除率最高達99.99 %,且毒性當量濃度均已降至0.1 ng-TEQ/Nm3以下,可符合世界最嚴格之法規管制標準。在不同氣流流量條件下,研究結果顯示戴奧辛去除率以7 slpm最高,且戴奧辛去除率均隨氣流流量的提升而呈現下降趨勢。在不同操作溫度條件下,戴奧辛去除率隨著溫度的上升而有下降趨勢。在水氣存在條件下,研究結果顯示水氣存在條件下(0 %、 5 %、10 %及15 %),通過第一層吸附床之戴奧辛濃度皆超過1 ng-TEQ/Nm3,顯示水氣在活性碳吸附戴奧辛上扮演負面的角色。
本研究亦探討戴奧辛前驅物質(氯酚)在未添加水氣及加入水氣後,通過球狀活性碳吸附床之戴奧辛生成潛勢,研究結果顯示在未添加水氣及加入水氣條件下,戴奧辛總生成量隨著操作溫度的上升而增加,氯酚之轉換率亦隨著操作溫度的升高而增加,呋喃(PCDF)之總生成量比戴奧辛(PCDD)高,此外,操作溫度與戴奧辛生成量成正相關,但不影響戴奧辛生成之物種分佈,水氣條件則使戴奧辛生成物種分佈略有不同,另外,脫附至氣流之戴奧辛濃度(氣相)隨著溫度升高而增加,在200 oC時,戴奧辛濃度(氣相)最高,且戴奧辛物種以低氯數之PCDD及PCDF為主,無水氣條件下,脫附至氣流中之戴奧辛物種以PCDF為主,加入水氣後,脫附至氣流中之戴奧辛除了PCDF之外,亦發現PCDD脫附至氣流中。
Emission of dioxins has become one of the most important environmental issues in recent years. Due to its high toxicity, the governments worldwide have implemented strict standards to regulate PCDD/F emissions. The objective of this study is to develop a more efficient activated carbon adsorption system. This study employs the bead-shaped activated carbon (BAC) as the adsorbent and combines the laboratory-scale multi-layer fluidized bed reactor to adsorb PCDD/Fs at different operating conditions, including gas flow rates, temperature and water vapor content.
For PCDD/F adsorption experiments, the results indicate the removal efficiency of PCDD/Fs is up to 99.99 % as the PCDD/F-containing gas flow passes through the third layer of the adsorption bed and the outlet PCDD/Fs concentrations would meet the 0.1 ng-TEQ/Nm3 emission standard. The influences of operating conditions on removal efficiency of PCDD/F reveal that the PCDD/F removal efficiency decreases as gas flow rates and operating temperature increase. In addition, the water vapor content plays a negative role in PCDD/F adsorption. In the presence of water vapor, as the PCDD/F-containing gas flow passes through the first layer of the adsorption bed, the outlet PCDD/Fs concentration would exceed 1 ng-TEQ/Nm3 .
Additionally, this study used chlorophenols as precursor to PCDD/F formation. More PCDD/Fs are formed as the operating temperature is increased from 150 oC to 200 oC. In addition, the conversion of chlorophenols increases with increasing operating temperature and the PCDF/PCDD ratio exceeds 1. The operating temperature has positive influence on PCDD/F formation but does not significantly change seventeen 2,3,7,8-substituted PCDD/Fs congeners distribution. The outlet concentration of PCDD/F (gas phase) also increases as operating temperature is increased and the major PCDD/F congeners are lowly chlorinated PCDD/F. In the absence of water vapor, most of the PCDD/Fs in the gas stream are PCDFs (about 98 %). In the presence of water vapor, some PCDDs would desorb to the gas stream.
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的與範疇 2
第二章 文獻回顧 3
2.1 戴奧辛基本特性 3
2.2 戴奧辛來源及生成機制 4
2.2.1 戴奧辛之來源 4
2.2.2 戴奧辛之生成機制 4
2.3 煙道排氣中氣相戴奧辛之控制技術 9
2.3.1 噴入式吸附系統 (Carbon injection) 11
2.3.2 固定床吸附系統 (Fixed-bed) 12
2.3.3 流動床吸附系統 (Moving-bed) 14
2.4 影響活性碳吸附戴奧辛之因素 20
2.4.1 活性碳特性之影響 20
2.4.2 溫度條件之影響 22
2.4.3 水氣條件之影響 24
2.4.4 戴奧辛物種之影響 25
2.5 顆粒體流動性質之量測 25
2.6 流體化床 27
2.6.1 流體化現象 27
2.6.2 實廠化流體化床之相關研究 30
第三章 研究方法與步驟 32
3.1 研究流程設計 32
3.2 戴奧辛實驗之藥品、溶劑、材料與設備 35
3.2.1 實驗藥品 35
3.2.2 實驗溶劑 36
3.2.3 實驗材料 36
3.2.4 實驗設備 37
3.3 戴奧辛樣品分析 38
3.3.1 戴奧辛樣品前處理 38
3.3.2 HRMS分析儀器條件設定 43
3.4 實驗設計 46
3.4.1 分層式流體化活性碳吸附床吸附戴奧辛實驗系統之建立 46
3.4.2 反應操作參數 48
3.5 其他儀器原理 49
3.5.1 BET比表面積分析儀 (ASAP2010) 49
3.5.2 掃描式電子顯微鏡分析 (SEM) 49
3.5.3 感應耦合電漿原子發射光譜分析儀 (ICP-AES) 50
3.5.4 流動性質測量 (Jenike剪力測試儀) 51
第四章 結果與討論 54
4.1 活性碳基本性質分析 54
4.1.1 比表面積及孔體積 54
4.1.2 掃描式電子顯微鏡 (SEM) 55
4.1.3 感應耦合電漿原子發射光譜分析儀 (ICP-AES) 57
4.1.4 活性碳流動性質量測 (Jenike剪力測試儀) 58
4.1.4.1 壁面摩擦角試驗 58
4.1.4.2 內摩擦角 62
4.2 以經驗式估算最小流體化速度 64
4.3 操作參數之探討 66
4.3.1 進流戴奧辛濃度分析 66
4.3.2 氣流流量對分層式流體化活性碳床去除戴奧辛之影響 68
4.3.3 操作溫度對分層式流體化活性碳床去除戴奧辛之影響 74
4.3.4 水氣含量對分層式流體化活性碳床去除戴奧辛之影響 80
4.3.5 球狀活性碳吸附戴奧辛之質量平衡 84
4.3.5.1 不同氣流流量,球狀活性碳吸附戴奧辛
之質量平衡 84
4.3.5.2 不同操作溫度,球狀活性碳吸附戴奧辛
之質量平衡 89
4.3.5.3 不同水氣含量,球狀活性碳吸附戴奧辛
之質量平衡 93
4.3.6 戴奧辛前驅物質(氯酚)生成戴奧辛之影響 96
第五章 結論與建議 104
5.1 結論 104
5.2 建議 106
參考文獻 107
Abad, E., Adrados, M. A., Caixach, K., Fabrellas, B. and Rivera, J., “Dioxin Mass Balance in a Municipal Waste Incinerator”, Chemosphere, Vol. 40, pp. 1143-1147, 2000.
Addink, R. and Altwicker, E.R., “Formation of Polychlorinated Dibenzo- p-dioxins and Dibenzofurans from Chlorinated Soot”, Carbon, Vol. 42, pp. 2661-2668, 2004.
Babushok, V. I. and Tsang, W., “Gas-phase Mechanism for Dioxin Formation”, Chemosphere, Vol. 51, pp. 1023-1029, 2003.
Briois, C., Ryan, S., Tabor, D., Touati, A. and Gullett, B. K., “Formation of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans from a Mixture of Chlorophenols over Fly Ash: Influence of Water Vapor”, Environmental Science and Technology, Vol. 41, pp. 850-856, 2007.
Buekens, A. and Huang H., “Comparative Evaluation of Techniques for Controlling the Formation and Emission of Chlorinated Dioxins/Furans in Municipal Waste Incineraiton”, Journal of Hazardous Materials, Vol. 62, pp. 1-33, 1998.
Chi, K. H., Chang, S. H., Huang, C. H., Huang, H. C. and Chang, M. B., “Partitioning and Removal of Dioxin-like Congeners in Flue Gases Treated with Activated Carbon Adsorption”, Chemosphere, Vol. 64, pp. 1489-1498, 2006.
Cudahy, J. J. and Helsel, R. W., “Removal of Products of Incomplete Combustion with Carbon”, Waste Management, Vol. 20, pp. 339-345, 2000.
Dickson, L. C., Lenoir, D. and Hutzinger, O., “Surface-Catalyzed Formation of Chlorinated Dibenzodioxins and Dibenzofurans during Incineration”, Chemosphere, Vol. 19, pp. 277-282, 1989.
Everaert, K. and Baeyens, J., “The Formation and Emission of Dioxins in Large Scale Thermal Process”, Chemosphere, Vol. 46, pp. 439-448, 2002.
Everaert, K., Baeyens, J. and Degreve, J., “Entrained-phase Adsorption of PCDD/F from Incinerator Flue Gases”, Environmental Science and Technology, Vol. 37, pp. 1219-1224, 2003.
Everaert, K. and Baeyens, J., “Removal of PCDD/F from Flue Gases in Fixed or Moving Bed Adsorbers”, Waste Management, Vol. 24, pp. 37-42, 2004.
Everaert, K., Baeyens, J. and Creemers, C., “Adsorption of Dioxins and Furans from Flue Gases in an Entrained Flow or Fixed/Moving Bed Reactor”, Journal of Chemical Technology and Biotechnology, Vol. 78, pp. 213-219, 2003.
Ghorishi, S. B. and Altwicker, E. R., “Formation of Polychlorinated Dioxins, Furans, Benzenes, and Phenols in the Post-combustion Region of a Heterogeneous Combustor: Effect of Bed Material and Post-combustion Temperature”, Environmental Science and Technology, Vol. 29, pp. 1156-1162, 1995.
Geldart, D., “Gas Fluidization Technology”, John Wiley and Sons, Chichester, UK, 1986.
Geldart, D. and Abrahamsen, A. R.,“Fluidization of Fine Porous Powders”, Chemical Engineering and Processing Symposium Series, Vol. 77, No. 205, pp.160, 1981.
Hall, C. R. and Holmes, R. J., “ The Preparation and Properties of Some Activated Carbon Modified by Treatment with Phosgene or Chlorine”, Carbon, Vol. 30, pp. 173-181, 1992.
Hung, H. and Buekens, A., “On the Mechanisms of Dioxin Formation in Combustion Process”, Chemosphere, Vol. 31, No. 9, pp. 4099-4117, 1995.
Inoue, K. and Kawamoto, K., “Fundamental Adsorption Characteristics of Carbonaceous Adsorbents for 1,2,3,4-Tetachlorobenzene in a Model Gas of an Incineration Plant”, Environmental Science and Technology, Vol. 39, pp. 5844-5850, 2005.
Jenike, A. W. and Johanson, J. R., “Mass flow Bins”, and “Funnel Flow Bins”, Annual Report, Washington, DC: American Iron and Steel Institute, Project No126-Fourth Part, and 126A-First Part, 1971.
Jenike Shear Tester, Model FT-5STEH. Jenike Shear Tester & Consolidating Bench Operating Instructions. Revised, January 1998. Jenike & Johanson, Inc., One Technology Park Drive, Westford, MA, USA.
Jankowska, H., Swiatkowski, A. and Choma, J., Activated Carbon, Ellis Horwood, New York, 1991.
Kim, B. H. and Kim, J. H., “Removal of PCDDs/Fs from a Solid Waste Incinerator Using a Dual Bag Filter System with Recycled Activated Carbon”, Proceedings of the 3rd International Conference on Combustion, Incineration / Pyrolysis and Emission Control, pp. 313-318, 2004.
Kawakami, I., Kanamura, M., Sakai, S. I. and Yagi, Y., “Dioxin Removal and Decomposition with Moving Bed Activated Carbon Adsorption Tower and Regenerator”, Organohalogen Compounds, Vol. 40, pp. 511-514, 1999.
Kim, S. C., Jeon, S. H., Jung, I. R., Kim, K. H., Kwon, M. H., Kim, J. H., Yi, J. H., Kim, S. J., You, J. C. and Jung, D. H., “Removal Efficiencies of PCDDs/PCDFs by Air Pollution Control Devices in Municipal Solid Waste Incinerator”, Chemosphere, Vol. 43, pp. 773-776, 2001.
Karademir, A., Bakoglu, M., Taspinar, F. and Ayberk, S., “Removal of PCDD/Fs from Flue Gas by a Fixed-bed Activated Carbon Filter in a Hazardous Waste Incinerator”, Environmental Science and Technology, Vol. 38, pp. 1201-1207, 2004.
Kunii, D. and Levenspiel, O., “Fluidization Engineering”, Butterworth- Heinemann Publishing, Inc, 2nd Ed., 1991.
McKay, G., “Dioxin Characterisation, Formation and Minimisation during Municipal Solid Waste (MSW) Incineration: Review”, Chemical Engineering Journal, Vol. 86, pp. 343-368, 2002.
Milligan, M.S. and Altwicker, E., “Formation of Dioxins: Competing Rates between Chemical Similar Precursors and De Novo Reaction”, Environmental Science and Technology, Vol. 27, pp. 1595-1601, 1993.
Mori, K., Matsui, H., Yamaguchi, N. and Nakagawa, Y., “Multi-component Behavior of Fixed-bed Adsorption of Dioxins by Activated Carbon Fiber”, Chemosphere, Vol. 61, pp. 941-946, 2005.
Mager, K., Meurer, U. and Wirling, J., “Minimizing Dioxin and Furan Emissions during Zinc Dust Recycle by the Waelz Process”, The Minerals, Metals & Materials Society’s Monthly Membership Journal, Vol. 8, pp. 20-25, 2003.
Niu, J., Chen, J., Hemkelmann, B., Quan, Xi., Yang, F., Kettrup, A. and Schramm, K. W., “Photodegradation of PCDD/Fs Adsorbed on Spruce (Piceaabies (L.) Karst) Needles under Sunlight Irradiation”, Chemosphere, Vol. 50, pp. 1217-1225, 2003.
Ryu, J. Y., Mulholland, J. A., Takeuchi, M., Kim, D. H. and Hatanaka, T., “CuCl2-catalyzed PCDD/F Formation and Congener Patterns from Phenols”, Chemosphere, Vol. 61, pp. 1312-1326, 2005.
Ryu, J. Y. and Mulholland, J. A., “Metal-mediated Chlorinated Dibenzo- p-dioxin (CDD) and Dibenzofuran (CDF) Formation from Phenols”, Chemosphere, Vol. 58, pp. 977-988, 2005.
Ramirez, D., Sullivan P. D., Rood, M. J. and Hay, J. K., “Equilibrium Adsorption of Phenol-, Tire-, and Coal-Derived Activated Carbons for Organic Vapors.” Journal of Environmental Engineering, Vol. 130, pp. 231-241, 2004.
Shin, D. H., Choi, S. M., Oh, J. E. and Chang, Y. S., “Evaluation of Polychlorinated Dibenzo-p-dioxin/Dibenzofuran (PCDD/F) Emission in Municipal Solid Waste Incinerators”, Environmental Science and Technology, Vol. 33, pp. 2657-2666, 1999.
Smolka, A. and Schmidt, K. G., “Gas/Particle Partitioning before and after Flue Gas Purification by an Activated Carbon Filter”, Chemosphere, Vol. 34, pp. 1075-1082, 1997.
Stenzel, M. H., “Apply Process Integration to Waste Minimization”, Chemical Engineering Progress, Vol. 89 (1), pp. 30-36, 1993.
Schwedes, J., “Vergleichende Betrachtungen zur Einsatz von Schergereten zur Messung von Schuettguteigenschaften”, Europaisches Symposium Partikelmesstechnik, Nuernberg, Preprints, Vol. 2, pp. 278-300, 1970.

Tuppurainen, K., Asikainan, A., Ruokojarvi, P. and Ruuakanen, J., “Perspectives on the Formation of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans during Municipal Solid Waste (MSW) Incineration and Other Combustion Process”, Accounts of Chemical Research, Vol. 36, pp. 652-658, 2003.
Wikstrom, E., Ryan, S., Touati, A. and Gullett, B. K., “In Situ Formed Soot Deposit as a Carbon Source for Polychlorinated Dibenzo-p-dioxins and Dibenzofurans”, Environmental Science and Technology, Vol. 38, pp. 2097-2101, 2004.
Williamson, P., “Production and Control of Polychlorinated Dibenzo -p- dioxins and Dibenzofurans in Incineration Systems: A Review”, Presented at Proc. 87th AWMA Annual Meeting & Exhibition, Ohio, June 19-24 1994.
Wen, C. Y. and Yu, Y. H., “A Generalized Method for Predicting for Minimum Fluidization Velocity”, AIChE Journal, Vol. 12, pp. 610-612, 1966.
Wu, S. Y. and Baeyens, J., “Effect of Operating Temperature on Minimum Fluidization Velocity”, Powder Technology, Vol. 67, pp. 217-220, 1991.
Xhrouet, C., Nadin, C. and Pauw, E. D., “Amines Compounds as Inhibitors of PCDD/Fs De Novo Formation on Sintering Process Fly Ash”, Environmental Science and Technology, Vol. 36, pp. 2760-2765, 2002.
Yamaguchi, H., Ogaki, Y., Nakamura, S., Okuyama, K., Shibuya, E. and Nomura, T., “Adsorption Characteristics of Dioxins and Hg in MSWI Flue Gas on Activated Coke”, Organohalogen Compounds, Vol. 19, pp. 411-414, 1994.
Takeuchi, M., “Reduction and Destruction Technologies of Combustion Derived Dioxins”,戴奧辛生成抑制與破壞去除控制技術研討會,台北,2002。
徐玄健,「汽車排放戴奧辛之特徵研究」,國立中央學環工所碩士論文, 2000。
鄭銚強,「焚化系統中抑制戴奧辛生成之初步研究」,國立中央大學環工所碩士論文,2003。
杜威達,「二維流動式顆粒床過濾器內部配置設計研究」,國立中央大學機械工程研究所碩士論文,2003。
劉邦煜、張豐堂,「VOCs流體化床吸附處理系統」,經濟部環保產業雙月刊第27期,2004。
張豐堂、林育旨,「球狀活性碳流體化吸附床吸脫附特性探討及流動參數設計」,第二十屆空氣污染控制技術研討會,台中,2006。
張書豪,「以活性碳吸附煙道排氣中戴奧辛之初步研究」,國立中央大學環工所碩士論文,2000。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔