跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/19 21:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:古秉章
研究生(外文):Ping-Chang Ku
論文名稱:翡翠水庫之沉降顆粒及沉積物中多環芳香族碳氫化合物(PAHs)之研究
論文名稱(外文):Polycyclic Aromatic Hydrocarbons(PAHs) in Settling Particles and Sediments in the Feitsui Reservoir, Northern Taiwan
指導教授:劉康克劉康克引用關係
學位類別:碩士
校院名稱:國立中央大學
系所名稱:水文所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:128
中文關鍵詞:沈降顆粒底泥多環芳香族碳氫化合物通量翡翠水庫
外文關鍵詞:polycyclic aromatic hydrocarbons (PAHs)settling particlesfluxsedimentsFeitsui reservoir
相關次數:
  • 被引用被引用:3
  • 點閱點閱:285
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
翡翠水庫供應了大台北地區之民生用水,其水質之變化與民眾之生活息息相關。本研究著重在翡翠水庫中多環芳香族碳氫化合物(簡稱PAHs)的研究,PAHs為一種厭水性且具有毒性、致癌性和致突變性的有機污染物,具生物累積的性質。PAHs經由有機物質的燃燒或是高溫作用後會產生,經由空氣傳播能存在在各種環境中,唯有被埋藏在沈積物後才會脫離環境中之物質循環。本研究目的是為了瞭解翡翠水庫中,沈降顆粒及沈積物中的PAHs之組成與含量、PAHs之沈降通量,並探討沈降顆粒和底泥的PAHs組成之異同,與其PAHs的來源。
翡翠水庫中沈降顆粒中PAHs含量在1258~29112ng/g之範圍間。20m之沈降顆粒收集器中所得到之樣本PAHs濃度較70m的高;在一般情況下,沈降顆粒之PAHs含量與有機碳含量有良好之正相關性,但是在環境中PAHs含量太高時則無法判定有機碳含量的影響。沈降顆粒的PAHs組成以3、4月及8、9月之組成較特殊,前者是以pyrene為主 ,後者是以2005年dimethylnaphthalene為主。
底泥之PAHs含量在330~804ng/g之範圍,底泥的PAHs含量與有機碳含量的相關性低。在15斷面之底泥中在表面下6公分處有一PAHs之極大值,其中以perylene為主要之成分。
沈降顆粒通量會受到濁流影響而增加,在一般情況下沈降顆粒之PAHs通量變化範圍在4 ~ 465 mg/m2/d之間,與沈降顆粒通量的變化趨勢相似。但是PAHs通量在2005年3月、9月與沈降顆粒通量卻有不同的變化,這是因為2004年3月和9月的PAHs濃度特高所致。
經過主成份分析後可以發現,翡翠水庫之沈降顆粒和底泥PAHs之組成可分為四類,第一類為表層底泥與再懸浮顆粒,此代表翡翠水庫之背景狀況;第二類為3、4月之組成為代表,其中以pyrene含量最高,推測其來源為直接大氣沈降;第三類以8、9月之沈降顆粒為代表,可能主要來自颱風降雨所帶來之表層土壤;第四類為斷面15之底泥,其中含有特高perylene,可能與支流帶來之沈積物有關。底泥與與沈降顆粒之PAHs組成有顯著不同,底泥之PAHs含量較沈降顆粒低很多,推測是因為PAHs之分解作用或礦物稀釋作用所影響。利用isomer ratio來鑑定PAHs之來源,發現底泥之PAHs來源為有機物質之燃燒來源,而沈降顆粒之PAHs可能主要來自石油來源。
The Feitsui reservoir supplies the water use for northern Taiwan. Hence, it water quality is closely linked to people’s well being. This study is concerned with the polycyclic aromatic hydrocarbons (PAHs) in the Feitsui reservoir. PAHs are an organic contaminants that have hydrophobic, toxic, carcinogenic, mutagenic and bioaccumulative. PAHs are generated from combustion or high temperature alteration of organic matters. PAHs is cycled through the environment until buried in sediments. The objective of this study is to investigate the composition and concentration of PAHs in settling particles and sediments, to assess the PAHs fluxes in settling particles, and to explore the compositional differebces of PAHs in settling particles and sediments. Finally, we hope to understand the sources of the PAHs.
The PAHs concentration in settling particles ranges from 1258 to 29112 ng/g. The PAHs concentration in sample from the 20m trap use higer than those in sample from the 70m trap. In general, the PAHs concentrations in settling particles are positively correlated with contents of organic carbon. When environmental PAHs concentration is too high, we cannot detect the correlation between PAHs concentration and organic carbon content. PAHs composition in settling particles were special in March, April, August and September, 2005. In frist two months, the PAHs compostion was dominated by pyrene In the other two months, it was dominated by dimethylnaphthalene.
The range of PAHs concentrations in sediments were between 330~804ng/g, and showed low correlation with organic carbon contents. The PAHs concentrations in sediments collected from cross-section No.15 had the highest values, the maximum occurred at 6 cm below surface. The principle compound was perylene.
In gernal, the PAHs flux of settling particles was between 4 and 465 mg/m2/day with a trend similar to that of the mass flux of settling particles flux. It was enhanceced by the turbid flow. The PAHs flux in March and September showed pattern different from the mass flux, because the PAHs concentration in settling particles in March and September were especially high.
Based on principle component analysis (PCA), the PAHs composition of settling particles and sediments can be divided into four fypes: the PAHs composition of surface sediments and suspended particles, which represents the background condition in the Feitsui reservoir; Second, the PAHs composition in settling particles in March and April, which was dominated by pyrene and might come directly from atomospheric deposition; Third, the PAHs composition in settling particles in August and September, which might come from the surface soils brought into the reservoir by strong typhoon precipitation; Fourth, the PAHs composition in sediments from cross-section No.15, which very high concentrations of perylene. The last type may have been contributed from a nearly tributary. The PAHs compositions of sediments and settling particles were significant different. The PAHs concentration in sediments were considerably lower than those in settling particles. The difference was attributed to degradation of PAHs in sediments and mineral dilution.
Finally, we used isomer ratio to identify the PAHs sources, we found that the PAHs in sediments may have originated mainly from combustion of organic matters; whereas the PAHs in settling particles may have originated from mainly petroleum.
摘要 I
致謝 V
目錄 VI
表目錄...………….…………………………………………………………………VIII
圖目錄……………………………………………………………………………...…IX
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究目的 5
第二章 研究地點及樣品採集 6
2.1翡翠水庫之介紹: 6
2.2 樣品之採集地點與時間: 7
2.2.1 沈降顆粒採集地點: 7
2.2.2 底泥採集地點: 7
第三章 研究方法與樣品處理 8
3.1 沈降顆粒 8
3.1.1 採集器材: 8
3.1.2 採集方法: 8
3.1.3 分析方法: 9
3.1.3.1 索式萃取: 9
3.1.3.2 Liquid-Liquid partition: 11
3.1.3.3 濃縮及除硫 12
3.1.3.4 吹氮及上機: 13
3.1.3.5 儀器分析 14
3.2底泥 15
3.2.1 採集器材: 15
3.2.2 採集方法: 15
3.2.3 分析方法: 16
3.2.3.1 前處理 16
3.2.3.2 索式萃取及前濃縮 16
3.2.3.3 淨化及除硫 17
3.2.3.4 後濃縮、吹氮及上機 18
3.2.4 儀器分析: 19
第四章 結果 20
4.1 沈降顆粒 20
4.1.1 沈降顆粒通量: 20
4.1.2 有機有機碳含量 21
4.1.3 沈降顆粒的有機碳通量 22
4.1.4 PAHs 濃度 23
4.1.5 PAHs 通量 23
4.1.6 PAHs與有機有機碳含量之相關性 24
4.2 底泥 25
4.2.1 底泥之有機碳含量 25
4.2.2 底泥的PAHs 25
4.3 小結 26
第五章 討論 29
5.1 沈降顆粒收集器及底泥的PAHs的化合物分布 29
5.2 PAHs之主成份分析 31
5.3 PAHs之isomer ratio 33
5.4 小結 34
第六章 結論與建議 36
6.1 結論 36
6.2 建議 39
參考文獻: 40
附錄A. 沈降顆粒之PAHs濃度分析結果 65
附錄B. 底泥之PAHs濃度分析結果 77
附錄C 利用內標準品推算樣品PAHs方法 83
附錄 D 銅片清洗與微量注射器的清洗 86
附錄E U.S. EPA 公布之16種優先列管之毒性PAHs 88
附錄F 20m沈降顆粒各樣品之PAHs組成 89
附錄G 70m沈降顆粒各樣品之PAHs組成 92
附錄H 底泥各樣品之PAHs組成 95
附錄I 儀器照片 98
附錄J 主成分分析………………………………………………………………..101
Baker, J. E.; Eisenreich, S. J.; Eadie, B. J., 1991. Sediment trap fluxes and benthic recyclic of organic carbon, polycyclic aromatic hydrocarbons, and polychlorobiphenyl congeners in Lake Superior. Environ. Sci. Technol. Vol 25, 500-509.
Baker, J. E. and Eisenreich, S. J., 1989. PCBs and PAHs as tracers of particulate dynamics in large lakes. J. Great Lakes Res., 15, 84-103
Baker, J. E. and Eisenreich, S. J., 1990. Concentrations and fluxes of polycyclic aromatic hydrocarbons and polychlorinated biphenyl across the air-water interface of Lake Superior, Environ. Sci. Technol.Vol 24, 342-352
Bamford, H. A.; Larsen, R. K.; Ko, F.; Baker, J. E., 1999. Diffusive Exchange of Polycyclic Aromatic Hydrocarbons across the Air-Water Interface of the Patapsco River, an Urbanized Subestuary of the Chesapeake Bay. Environ. Sci. Technol. Vol.33, 2138-2144.
Davis, C. S. ; Fellin P. ; Otson R., 1987. A Review os Sampling Methods for polynuclear Aromatic Hydrocarbons in Air. Journal of Applied Crystallography, Vol. 37, pp. 1397-1408, 1987
Dachs, J.; Eisenreich, S. J.; Baker, J. E.; Ko, F.; Jeremiason, J. D., 1999. Coupling of Phytoplankton Uptake and Air-Water Exchange of Persistent Organic Pollutants. Environ. Sci. Technol. Vol. 33, 3653-3660.
Dickhut, R.M.; Canuel, E.A.; Gustafson, K.E.; Liu, K., Arzayus, K.M.; Walker, S.E.; Edgecombe, G.; Gaylor, M.O.; Macdonald, E.H., 2000. Automotive sources of carcinogenic polycyclic aromatic hydrocarbons associated with particulate matter in the Chesapeake Bay region. Environ. Sci. Technol. 34, 4635-4640.
Elisabeth Lipiatou, Joan Albaigés, 1994. Atmospheric deposition of hydrophobic organic chemicals in the northwestern Mediterranean Sea: comparison with the Rhone river input. Marine Chemistry Vol. 46, 153-164
Grimmer, G., 1983. Environmental Carcinogens: Polycyclic Aromatic Hydrocarbons , CRC Press Inc.
Hartmann, P.C.; Quinn, J.G.; Carins, G.W.; king, J.W., 2004. The distribution and sources of polycyclic aromatic hydrocarbons in Narragansett Bay surface sediments. Mar. Pollut. Bull. 48, 351-358.
Kuklick, J.R.; Sivertsen, S.K.,; Sanders, M.; Scott, G.I., 1997. Factors influencing polycyclic aromatic hydrocarbons distributions in South Carolina estuarine sediments. J. Exp. Mar. Biol. Ecol. 213, 13-29.
Ko, F. C. and Baker, J. E., 2004. Seasonal and annual loads of hydrophobic organic contaminants from the Susquehanna River basin to the Chesapeake Bay. Marine Pollution Bulletin Vol.48, 840-851.
Ko, F. C., Sanford, L. P., Baker, J. E., 2003. Internal recycling of particle reactive organic chemicals in the Chesapeake Bay water column. Marine Chemistry Vol. 81, 163-176
Ko, F. C., Baker J.E., 1995. Partitioning of hydrophobic organic contaminants to resuspended sediments and plankton in the mesohaline Chesapeake Bay. Marine Chemistry Vol. 49, 171-188.
Lee, M.L.; Pardo, G.P.; Howard, J.B.; Hites, R.A., 1977. Source identification of urban airborne polycyclic aromatic hydrocarbons by gas chromatographic mass spectrometry. Biomed. Mass Spectrom. 4, 182-186
Neff, J. M., 1979. Polycyclic aromatic hydrocarbons in the aquatic environment: Sources, fate and biological effects. Applied Science puclisher, London, UK.
Notar, M.; Leskovsek, H.; Faganeli, J., 2001. Composition, distribution and sources of polycyclic aromatic hydrocarbons in sediment of the Gulf of Trieste, Northern Adriatic Sea. Mar. Pollut. Bull. 42, 36-44.
Oros, D.R.; Ross, J.R.m., 2004. Polycyclic aromatic hydrocarbons in San Francisco Estuary sediments. Mar. Chem. 86, 169-184
Peter W. J., 1978. Handbook of carcinogens and other hazardous substances – Chemical and trace analysis : Chapter8 – Polynuclear Aromatic hydrocarbons.
Pott, P., 1775. Chirurgical Observations Relative to the Cataract, the Polypus of the Nose, the Cancer of Scrotum, the Different Kinds of Ruptures, and the Mortification of the Toes and Feet, Hawes, L.; Clarke, W.; Collins, R. London.
Simpson, D. C.; Harrington, C .F. and Cullen. W. R., 1998. Polycyclic aromatic hydrocarbons contamination in marine sediments near Kitimat, British Columbia. Environ. Sci. Technol. Vol. 32, 3266-3272.
Sanders, G.; Hamilton-Taylor, J.; Jones. K. C., 1996. PCB and PAHs dynamics in a small rural lake. Environ. Sci. Technol. Vol. 30, 2958-2966
Sanders, G.; Taylor, J. H.; Jones, K.C., 1996. PCB and PAHs dynamics in a small rural lake. Environ. Sci. Technol. 30, 2958-2966.
Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S., 2002. PAHs in the Fraser River basin: a critical appraisal of PAHs ratios as indicators of PAHs source and composition. Organic Geochemistry 33, 489-515.
U.S. EPA http://www.epa.gov/pesticides/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top