跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/14 08:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭晉全
研究生(外文):Chin-Chiuan Kuo
論文名稱:離子輔助蒸鍍銦鉬氧化物薄膜於聚醚堸基板之光電特性研究
論文名稱(外文):The Opto-electric Properties of Mo-doped In2O3 Films Deposited by Ion Beam Assisted Evaporation on Polyethersulfone Substrates
指導教授:陳繁興陳繁興引用關係何主亮何主亮引用關係
指導教授(外文):F. S. ChenJ. L. He
學位類別:博士
校院名稱:國立彰化師範大學
系所名稱:工業教育與技術學系
學門:教育學門
學類:專業科目教育學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:85
中文關鍵詞:氧化銦鉬反應式離子輔助蒸鍍聚醚堸基板電阻率穿透率
外文關鍵詞:Indium molybdenum oxideReactive ion beam assisted evaporationPolyethersulfone substrateResistivityTransmittance
相關次數:
  • 被引用被引用:1
  • 點閱點閱:362
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
可撓式基板由於具有體積更薄、質量更輕與堅固性高優點,所以被認定為是下個世代顯示器基板的發展趨勢。對於目前業界關注的塑膠基板沉積透明導電膜而言,低溫成膜通常會造成薄膜結晶度下降,進而影響薄膜光電性能。本研究主要以低溫製程作為出發點,以反應式離子輔助蒸鍍製程,於聚醚堸基板沉積高品質氧化銦鉬(Indium molybdenum oxide, IMO)透明導電膜為目標,藉由氧化銦摻雜MoO3元素以提高薄膜載子遷移率,並尋求合適的阻絕層鍍膜。
實驗中固定腔體壓力、蒸鍍速率與基板溫度的條件下,探討MoO3添加量、氧流量、離子源放電參數與膜厚對於IMO薄膜結晶性與表面形貌、光電特性的影響。結果顯示在PES基板預鍍二氧化矽阻絕層,可提高蒸鍍IMO薄膜的光電特性。與傳統電子束蒸鍍之IMO薄膜相較,離子輔助蒸鍍製程在於薄膜沉積期間所提供的低能量離子轟擊,導致於蒸發原、分子與氧原子結合率的提高,薄膜結晶性與表面粗糙度的改善。在最佳製程條件下,可獲得最低電阻率7.61×10-4 ohm-cm,波長550 nm光譜穿透率84 %之高品質 IMO薄膜;此效能符合光電產業透明電極之要求。
With advantage of light-weight, rigidity and flexibility, polymer substrates are becoming on the road to the next generation display. Major difficulty of the poor film crystallinity arose when applying transparent conducting oxide as the electrode onto polymer substrate because low substrate temperature is required. This results in poor optical and electrical properties. This study involves the development of a low temperature deposition process by employing an ion beam assisted evaporation technique to deposit indium oxide films onto polyethersulfone (PES) substrates. Molybdenum was incorporated into the film to increase carrier concentration. Barrier layer pre-coated onto PES substrate was investigated. With such a combination, high quality of the deposited IMO films on PES polymer substrates were expected.
Influence of the molybdenum dosage, flow rate of oxygen as oxygen compensation to the film, operation condition of the beam source and deposition time to the crystallinity, film morphology as well as optical and electrical properties were investigated. The results show that a SiO2 barrier layer coated on PES substrate before deposition process can enhance the optoelectronic properties of IMO thin films. Comparing with IMO films produced by conventional reactive electron beam evaporation, the low energy ion bombardment provided by ion source improves the crystallinity and surface roughness of the deposited films by the enhanced surface migration of the vapor adatoms and the acceleration of oxide formation. Ultimately, the IMO films with the lowest resistivity of 7.61×10-4 ohm-cm and high transmittance of 84% at the wavelength 550 nm is achieved. IMO films resulted from this method can meet the requirement of transparent conductive film for optoelectronic industry.
中文摘要Ⅰ
英文摘要Ⅱ
目次Ⅳ
表次Ⅶ
圖次Ⅷ

第一章 緒論1
1.1 研究背景與動機1
1.2 研究目的4
第二章 理論分析與文獻回顧5
2.1 離子束輔助蒸鍍法原理5
2.1.1 蒸鍍原理5
2.1.2 電子束原理7
2.1.3 離子束原理10
2.1.4 薄膜沉積溫度與晶粒尺寸模型14
2.1.5 離子束輔助蒸鍍機制17
2.2 聚醚堸高分子基板特性19
2.3 IMO基本特性21
2.4 不同製程沉積之IMO薄膜特性回顧23
2.4.1 熱蒸鍍法23
2.4.2 脈衝雷射沉積法24
2.4.3 濺鍍法24
2.4.4 管道火花燒蝕法25
2.4.5 噴霧熱分解法26
第三章 研究方法與流程27
3.1 實驗流程27
3.2 離子束輔助蒸鍍設備28
3.3 試片準備30
3.4 鍍料準備30
3.5 薄膜沉積條件31
3.6 鍍膜的微觀組織分析34
3.6.1 薄膜相結構分析34
3.6.2 薄膜微觀形態觀察34
3.7 薄膜電性量測35
3.7.1 四點探針35
3.7.2 霍爾效應37
3.8 薄膜光性量測39
第四章 結果與討論40
4.1 MoO3添加量對於IMO薄膜光電特性之影響40
4.2 SiO2阻絕層與氧流量對於IMO薄膜光電特性之影響46
4.3 離子源放電電壓對於IMO薄膜光電特性之影響53
4.4 離子源放電電流對於IMO薄膜光電特性之影響60
4.5 膜厚對於IMO薄膜光電特性之影響65
第五章 結論72
第六章 未來研究74
參考文獻75
作者簡歷83
研究成果84
1. 楊明輝,“金屬氧化物透明導電材料的基本原理”,工業材料,179 (2001) 134-144.
2. C. G. Granqvist and A. Hultaker, “Transparent and conducting ITO films: new developments and applications”, Thin Solid Films, 411 (2002) 1-5.
3. D. S. Ginley and C. Bright, “Transparent conducting oxides”, MRS Bulletin, 25, 8 (2000) 15-18.
4. 孫士堯,“氧化銦鉬蒸鍍靶材的製作及其薄膜光電性質之研究”,成功大學材料科學與工程學系博士論文 (2005).
5. W.W. Wang, X.G. Diao, Z. Wang, M. Yang, T.M. Wang and Z. Wu, “Preparation and characterization of high-performance direct current magnetron sputtered ZnO:Al films”, Thin Solid Films, 491 (2005) 54-60.
6. Y. Igasaki and H. Kanma, “Argon gas pressure dependence of the properties of transparent conducting ZnO:Al films deposited on glass substrates”, Applied Surface Science, 169-170 (2001) 508-511.
7. M. Miyazaki, K. Sato, A. Mitsui and H. Nishimura, “Properties of Ga-doped ZnO films”, Journal of Non-Crystalline Solids, 218 (1997) 323-328.
8. E. Fortunato, A. Goncalves, V. Assuncao, A. Marques, H. Aguas, L. Pereira, I. Ferreira and R. Martins, “Growth of ZnO:Ga thin films at room temperature on polymeric substrates: thickness dependence”, Thin Solid Films, 442 (2003) 121-126.
9. S. Shirakata, T. Sakemi, K. Awai and T. Yammoto, “Electrical and optical properties of large area Ga-doped ZnO thin films prepared by reactive plasma deposition”, Superlattices and Microstructure, 39 (2006) 218-228.
10. C. Guillen, and J. Herrero, “Electrical contacts on polyimide substrates for flexible thin film photovoltaic devices”, Thin Solid Films, 431-432 (2003) 403-406.
11. J. Pla, M. Tamasi, R. Rizzoli, M. Losurdo, E. Centurioni, C. Summonte and F. Rubinelli, “Optimization of ITO layers for applications in a-Si/c-Si heterojunction solar cells”, Thin Solid Films, 425 (2003) 185-192.
12. L. Zhao, Z. Zhou, H. Peng and R. Cui, “Indium tin oxide thin films by bias magnetron rf sputtering for heterojunction solar cells application”, Applied Surface Science, 252 (2005) 385-392.
13. T.P. Nguyen, P.L. Rendu, N.N. Dinh, M. Fourmigue and C. Meziere, “Thermal and chemical treatment of ITO substrates for improvement of OLED performance”, Synthetic Metals, 138 (2003) 229-332.
14. C.J. Huang, Y.K. Su and S.L. Wu, “The effect of solvent on the etching of ITO electrode”, Materials Chemistry and Physics, 84 (2004) 146-150.
15. M.J. Alam and D.C. Cameron, “Characterization of transparent conductive ITO thin films deposited on titanium dioxide film by a sol–gel process”, Surface and Coatings Technology, 142-144 (2001) 776-780.
16. M.J. Alam and D.C. Cameron, “Investigation of annealing effects on sol–gel deposited indium tin oxide thin films in different atmospheres”, Thin Solid Films, 420-421 (2002) 76-82.
17. C. Su, T.-K. Sheu, Y.-T. Chang, M.-A. Wan, M.-C. Feng and W.-C. Hung, “Preparation of ITO thin films by sol-gel process and their characterizations”, Synthetic Metals, 153 (2005) 9-12.
18. A.K. Kulkarni, K.H. Schulz, T.-S. Lim and M. Khan, “Electrical, optical and structural characteristics of indium-tin-oxide thin films deposited on glass and polymer substrates”, Thin Solid Films, 308-309 (1997) 1-7.
19. H. Patel, M. Saif and H. Memarian, “Reactive sputter deposition of indium tin oxide films onto polymeric webs using optical emission spectroscopy and mass spectroscopy as process monitoring and control”, Surface and Coatings Technology, 94-95 (1997) 583-586.
20. C.N.d. Carvalho, G. Lavareda, E. Fortunato, H. Alves, A. Goncalves, J. Varela, R. Nascimento and A. Amaral, “ITO films with enhanced electrical properties deposited on unheated ZnO-coated polymer substrates”, Materials Science and Engineering B , 118 (2005) 66-69.
21. H.K. Pulker, “Optical coatings deposited by ion and plasma PVD processes”, Surface and Coatings Technology , 112 (1999) 250-256.
22. M. Ohring, Materials Science of Thin Films Deposition and Structure, Academic Press, New York, (2002) 95.
23. 唐傳忠,薄膜材料製備原理、技術及應用,冶金工業出版社,(2003) 26-46.
24. T. Miyata, S. Lda, and T. Minami, “Highly transparent and conductive ZnO:Al thin films prepared by vacuum arc plasma evaporation”, Journal of Vacuum Science and Technology A , 21(4) (2003) 1404-1408.
25. 趙玉清,電子束離子束技術,西安交通大學出版社,(2002) 1-18.
26. 鄭智元,“銻化銦薄膜之電子特性與微觀組織之研究”,中山大學材料科學與工程學系碩士論文 (2000).
27. 何主亮,楊凱琳,陳克昌, “離子佈植的表面工業應用之近年發展”,金屬熱處理,59 (1998) 62-71.
28. H. Kaufman, “End-Hall ion source”, Journal of Vacuum Science and Technology A , 5(4) (1987) 2081-2084.
29. H. Kaufman, “Broad-beam ion sources:Present status and future directions”, Journal of Vacuum Science and Technology A , 4(3) (1986) 764-771.
30. H.T.G. Hentzell, C.R.M. Grovenor and D.A. Smith, “Grain structure variation with temperature for evaporated metal films”, Journal of Vacuum Science and Technology A , 2(2) (1984) 218-219.
31. D.S. Rickerby, A. Matthews, Advanced Surface Coating: a Handbook of Surface Engineering, Blackie & Son Limited, Landon, (1991) 45.
32. http://www.linkupon.com/PES.html#08
33. Y. Meng, X.L. Yang, H.X. Chen, J. Shen, Y.M. Jiang, Z.J. Zhang, and Z.Y. Hua, “A new transparent conductive thin film In2O3:Mo”, Thin Solid Films, 394 (2001) 219-223.
34. Y. Meng, X.L. Yang, H.X. Chen, J. Shen, Y.M. Jiang, Z.J. Zhang, and Z.Y. Hua, “Molybdenum-doped indium oxide transparent conductive thin films”, Journal of Vacuum Science and Technology A , 20(1) (2002) 288-290.
35. C. Warmsingh, Y. Yoshida, and D. Readey, “Highly conductive textured molybdenum doped indium oxide thin films”, NCPV and Solar Program Review Meeting, Denver Marriott City Center Denver, Colorado, USA, March (2002).
36. Y. Yoshida, T.A. Gessert, C.L. Perkins and T.J. Coutts, “Development of radio-frequency magnetron sputtered indium molybdenum oxide”, Journal of Vacuum Science and Technology A , 21(4) (2003) 1092-1097.
37. X. Li, W. Miao, Q. Zhang, L. Huang, Z. Zhang and Z. Hua, “The electrical and optical properties of molybdenum-doped indium oxide films grown at room temperature from metallic target”, Semiconductor Science and Technology, 20 (2005) 823-828.
38. M.F.A.M. van Hest, M.S. Dabney, J.D. Perkins and D.S. Ginley, “High-mobility molybdenum doped indium oxide”, Thin Solid Films, 496 (2006) 70-74.
39. L. Huang, X.F. Li, Q. Zhang, W.N. Miao, L. Zhang, X.J. Yan, Z.J. Zhang and Z.Y. Hua, “Properties of transparent conductive In2O3:Mo thin films deposited by Channel Spark Ablation”, Journal of Vacuum Science and Technology A , 23(5) (2005) 1350-1353.
40. D.J. Seo and S.H. Park, “Structural, electrical and optical properties of In2O3:Mo films deposited by spray pyrolysis”, Physica B, 357 (2005) 420-427.
41. H. Xiao, “Introduction to semiconductor manufacturing technology”, Prentice Hall Inc. (2001) 156-157.
42. 陳文照、曾春風及游信和譯,材料科學與工程,高立圖書有限公司 (1999) 754-756.
43. H.L. Hartnagel, A.L. Dawar, A.K. Jain and C. Jagadish, Semiconducting Transparent Thin films, IOP, Landon, (1995) 223-228.
44. N. Fujimura, T. Nishihara, S. Goto, J. Xu and T. Ito, “Control of preferred orientation for ZnOx films control of self-texture”, Journal of Crystal Growth, 130 (1993) 269-279.
45. M. Mizuhashi, “Electrical properties of vacuum-deposited indium oxide and indium tin oxide films”, Thin Solid Films, 70 (1980) 91-100.
46. D. Ginley, B. Roy, A. Ode, C. Warmsingh, Y. Yoshida, P. Parilla, C. Teplin, T. Kaydanova, A. Miedaner, C. Curtis, A. Martinson, T. Coutts, D. Ready, H. Hosono and J. Perkins, “Non-vacuum and PLD growth of next generation TCO materials”, Thin Solid Films, 445 (2003) 193-198.
47. E. Burstein, “Anomalous optical absorption limit in InSb”, Physica Review, 93 (1954) 632-633.
48. R.Y. Tsai, F.C. Ho, M.Y. Hua, "Annealing effects on the properties of indium tin oxide films coated on soda lime glasses with a barrier layer of TiO2-SiO2 composite films", Optical Engineering, 36(8) (1997) 2335-2340.
49. A.S. da Silva Sobrinho, M. Latreche, G. Czeremuszkin, J.E. Klemberg-Sapieha and M.R. Wertheimer, “Transparent barrier coatings on polyethylene terephthalate by singleand dual-frequency plasma-enhanced chemical vapor deposition”, Journal of Vacuum Science and Technology A, 16(6) (1998) 3190-3198.
50. E.B. Ali, H.E. Maliki, J.C. Bernede, M. Sahnoun, A. Khelil and O. Saadane, “In2O3 deposited by reactive evaporation of indium in oxygen atmosphere-influence of post-annealing treatment on optical and electrical properties”, Materials Chemistry and Physics, 73 (2002) 78-85.
51. C.N.d. Carvalho, G. Lavareda, E. Fortunato, H. Alves, A. Goncalves, J. Varela, R. Nascimento and A. Amaral, “Properties of ITO films deposited by r.f.-PERTE on unheated polymer substrates-dependence on oxygen partial pressure”, Thin Solid Films, 427 (2003) 215-218.
52. Y. Leterrier, “Durability of Nanosized Oxygen-barrier Coatings on Polymer”, Progress in Materials Science, 48 (2003) 1-55.
53. J. Ma, S.Y. Li, J.Q. Zhao and H.L. Ma, “Preparation and properties of indium tin oxide films deposited on polyester substrates by reactive evaporation”, Thin Solid Films, 307 (1997) 200-202.
54. C. Liu, T. Matsutani, T. Asnuma and M. Kiuchi, “Structural, electrical and optical properties of indium tin oxide films prepared by low-energy oxygen-ion-beam assisted deposition”, Nuclear Instruments and Methods in Physics Research B, 206 (2003) 348-352.
55. H.R. Kaufman and J.M.E. Harper, “Ion doses for low-energy ion-assist applications”, Journal of Vacuum Science and Technology A , 22(1) (2004) 221-224.
56. C.R.M. Grovenor, H.T.G. Hentzell and D.A. Smith, “The Development of Grain Structure During Growth of Metallic Films”, Acta Metallurgical Material, 32(5) (1984) 773-781.
57. C. Liu, T. Mihara, T. Matsutani, T. Asanuma and M. Kiuchi, “Preparation and characterization of indium tin oxide films formed by oxygen ion beam assisted deposition”, Solid State Communications, 126 (2003) 509-513.
58. D. Kim and S. Kim, “Effect of secondary ion beamener gy and oxygen partial pressure on the structural, morphological and optical properties of ITO films prepared by DMIBD technique”, Surface and Coatings Technology, 154 (2002) 204-208.
59. 劉金聲,離子束沉積薄膜技術及應用,國防工業出版社,(2003) 344-347.
60. W. Ensinger, “Low energy ion assist during deposition-an effective tool for controlling thin film microstructure”, Nuclear Instruments and Methods in Physics Research B, 127-128 (1997) 796-808.
61. S.Y. Sun, J.L. Huang and D.F. Lii, “Effects of oxygen contents on the electrical and optical properties of indium molybdenum oxide films fabricated by high density plasma evaporation”, Journal of Vacuum Science and Technology A , 22(4) (2004) 1235-1241.
62. E. Elangovan, P. Barquinha, A. Pimental, A.S. Viana, R. Martins and E. Fortunato, “Some studies on Molybdenum doped Indium oxide thin films rf sputtered at room temperature”, MRS Symposium R, Nice, France, 928 (2006).
63. L.J. Meng and M.P. dos Santos, “Properties of indium tin oxide films prepared by rf reactive magnetron sputtering at different substrate temperature”, Thin Solid Films, 322 (1998) 56-62.
64. C. Liu, T. Mihara, T. Matsutani, T. Asanuma and M. Kiuchi, E. Alves and M. Reis, “Room-temperature growth of crystalline indium tin oxide films on glass using low-energy oxygen-ion-beam assisted deposition”, Journal of Applied Physics, 93(4) (2003) 2262-2266.
65. S.K. Park, J.I. Han, W.K. Kim and M.G. Kwak, “Deposition of indium–tin-oxide films on polymer substrates for application in plastic-based flat panel displays”, Thin Solid Films, 397 (2001) 49-55.
66. C.N.d. Carvalho, A. Luis, G. Lavareda, E. Fortunato and A. Amaral, “Effect of thickness on the properties of ITO thin films deposited by RF-PERTE on unheated, flexible, transparent substrates”, Surface and Coatings Technology, 151-152 (2002) 252-256.
67. H. Kim, J.S. Horwitz, G. Kushto, A. Pique, Z.H. Kafafi and C.M. Gilmore, “Effect of film thickness on the properties of indium tin oxide thin films”, Journal of Applied Physics, 88(10) (2000) 6021-6025.
68. W.F. Wu and B.S. Chiou, “Mechanical and optical properties of ITO films with anti-reflective and anti-wear coatings”, Applied Surface Science, 115 (1997) 96-102.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top