跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 21:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:康佳瑜
研究生(外文):Jia-Yu Kang
論文名稱:以即時定量PCR技術偵測微衛星DNA量的變異的可行性之研究
論文名稱(外文):The Assessment of Detection of Quantitative Alteration in Microsatellite DNA by Real-Time PCR Technology
指導教授:簡一治
指導教授(外文):Yi-Chih Chien
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:生物學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:81
中文關鍵詞:微衛星定量分析
相關次數:
  • 被引用被引用:0
  • 點閱點閱:414
  • 評分評分:
  • 下載下載:84
  • 收藏至我的研究室書目清單書目收藏:0
摘要
對偶基因不平衡所造成的LOH(loss of heterozygousity)是腫瘤發生過程中獨特的遺傳變異機制之一。Gene Scan偵測方式會受限於異結合比例,微衛星定量分析(QuMA)不僅能克服此問題,還能區分變異是放大或缺失。本實驗欲以QuMA建立偵測遺傳變異的系統,並與Gene Scan比較是否具一致性,進而取代之。沿用Gene Scan篩選的一級標記D17S849(17p)、D8S505(8q)和二級標記D16S3091(16q),對肝癌組織、血漿、血球進行相對定量,所用的內在校正有兩種:參考基因(β-actin)及螢光測量法(Fluorometry)所得DNA原始濃度。結果如下所述,(1)組織-β-actin為內在校正時,QuMA和Gene Scan結果相同的比例為:82.1%(D17S)、90%(D8S)、75%(D16S),兩種方法以 Kappa一致性分析,確實呈現高度符合的結果(p=0.01、p=1.6×10-4、p=0.02)。Fluorometry為內在校正部分:60.7%(D17S)、53.3%(D8S)、66.7%(D16S)。(2)血漿-β-actin部分結果一樣的比例是33.3%(D17S)、65.2%(D8S)、46.7%(D16S)。Fluorometry部分35%(D17S)、27.3%(D8S)、66.7%(D16S)。本實驗發現β-actin當內在校正比較精確,Fluorometry不適合可能是未經過PCR反應過程。血漿結果差異甚大,可能是Gene Scan測量血漿微衛星DNA不是很靈敏,因為有許多檢體皆偵測不到,而且血漿半衰期很短,導致符合比例不高。(3)血球-QuMA測得肝癌與正常人的相對量進行判別分析,得到組別正確分類的機率是91.9%,可見正常人與癌症可以相對量區分。進一步分析三組微衛星以QuMA和Gene Scan檢測後,整體存活率及無病存活率皆無顯著關係,原因是當初Gene Scan僅根據組織、血漿中LOH的比例認定這三組標記,並沒有將預後的關係包含在內。本實驗還發現, Fluorometry測得的血漿原始濃度和轉移有顯著關係(p =0.0048)。本實驗證明QuMA確實不受限異結合比例、可快速地進行篩檢、操作又比Gene Scan方便,希望在未來能運用於癌症的早期診斷與預後評估。
Abstract
Genetic alteration plays an important role in cancer progression. Loss of heterozygousity (LOH), caused by allelic imbalance, is one of the distinctive genetic alteration mechanisms in the process of cancer progression. The way Gene Scan detects LOH is limited to the ratio of heterozygosity, while QuMA not only solves the problem, but it also differentiates whether a genetic alteration gains or loses. The following experiment is designed, by means of QuMA, to establish a system which can detect the genetic alteration, and to compare if the results correspond to those detected by Gene scan, in an attempt to substitute for Gene Scan. Used by Gene scan, the first rank of the markers, D17S849 (17p), D8S505 (8q), and the second rank of the marker, D16S3091 (16q), are adopted to perform relative quantification of tissue, plasma, and blood in liver cancer in the experiment. To the internal controls, β-actin, and the original density of DNA gained by Fluorometry are used for revision. The results are as follows: (1) in the experiment on tissue using β-actin as an internal control, 82.1% of results showed by D17S, 90% by D8S, and 75% by D16S accord with those by Gene Scan, revealing high correspondences based on Kappa coefficient of agreement(p=0.01、p=1.6×10-4、p=0.02).When the original density of DNA gained by Fluorometry is adopted as an internal control, the corresponding results are 60.7% by D17S, 53.3% by D8S, and 66.7% by D16S. (2) In the experiment on plasma using β-actin as an internal control, the consistent results are 33.3% conducted by D17S, 65.2% by D8S, and 46.7% by D16S, while the equivalent results in using the original density of DNA gained by Fluorometry as an internal control are changed to 35% by D17S, 27.3% by D8S and 66.7% by D16S. The experiment indicates that β-actin used by QuMA as an internal control shows more accuracy than Fluorometry. The reason why Fluorometry is inappropriate might be that Fluorometry did not undergo the process of PCR reaction. The results in plasma by QuMA differ greatly from those by Gene Scan. The cause might be that Gene Scan was not sensitive to detect microsatellite DNA of plasma, because many samples were not detected by it, and the period of half-life of plasma was short, leading to low ratio of consistency. (3) In the experiment on blood, according to QuMA, the relative amount of people with lung cancer and that of people without the cancer are verified by discriminate analysis. The ratio of accuracy in discriminating the two classes of people amounts to 91.9% based on discriminant analysis. Therefore, whether people have lung cancer or not can be differentiated by the relative amount. In further analysis of the three markers used by QuMA and Gene scan, there is no obvious relationship between the overall survival and disease free survival to the markers. The reason is that Gene scan adopted the three markers according to the ratio of LOH in tissue and plasma, exclusive of the assessment of prognosis. Also, the experiment found out that the original density of DNA gained by Fluorometry is manifestly related to metastasis(p=0.0048). The experiment verifies that QuMA is in fact not restrained to the ratio of heterozygosity, and is fast to screen. In addition, QuMA is more convenient for manipulation than Gene Scan. It is hoped that QuMA will be applied to detect cancer in its early stage and for prognosis in the future.
中文摘要 I
英文摘要 II
第一章 文獻回顧
第一節 癌症的發生 1
第二節 體液DNA 3
一、體液DNA的構造與來源 4
二、血漿/血清DNA與癌症 5
三、血漿/血清中微衛星DNA的變異 6
四、分析血漿/血清中微衛星DNA的限制  7
五、體液DNA於醫學上的應用 8
第三節 癌症的分子診斷 8
一、突變基因及單一核酸多變性的檢測 9
二、檢測微衛星序列不穩定(MSI) 10
三、生物晶片 13
四、血清腫瘤標誌的檢測 15
五、蛋白質體與癌症的分子診斷 16
六、基因表現量的檢測 17
第四節 及時定量PCR(Real-Time PCR) 18
一、Real-Time PCR的發現與影響 19
二、Real-Time PCR與其它方法的比較 19
三、Real-Time PCR的高靈敏度 20
四、Real-Time PCR的應用 20
(一)偵測癌症預後的分子診斷 22
(二)快速評估癌症病患的治療選擇 23
(三)偵測血漿DNA 24
(四)突變分析 25
第五節 實驗目的 26
第二章 材料方法    28
第三章 結果     38
第四章 討論     45
第五章 結論     51
第六章 參考文獻    52
第七章 附表與圖   59
Aarnio M, Sankila R, Pukkala E, Salovaara R, Aaltonen LA, de la Chapelle A, Peltomaki P, Mecklin JP, Jarvinen HJ. Cancer risk in mutation carriers of DNA-mismatch-repair genes. Int J Cancer., 81:214-218., 1999.
Aldape K, Ginzinger DG, Godfrey TE. Real-time quantitative polymerase chain reaction: a potential tool for genetic analysis in neuropathology. Brain Pathol., 12:54-66., 2002.
Anker P, Mulcahy H, Chen XQ, Stroun M. Detection of circulating tumour DNA in the blood (plasma/serum) of cancer patients. Cancer Metastasis Rev., 18:65-73.,1999.
Atkin NB. Microsatellite instability. Cytogenet Cell Genet., 92:177-181., 2001.
Bai RK, Wong LJ. Detection and quantification of heteroplasmic mutant mitochondrial DNA by real-time amplification refractory mutation system quantitative PCR analysis: a single-step approach. Clin Chem., 50:996-1001., 2004.
Balakrishnan A, von Neuhoff N, Rudolph C, Kamphues K, Schraders M, Groenen P, van Krieken JH, Callet-Bauchu E, Schlegelberger B, Steinemann D. Quantitative microsatellite analysis to delineate the commonly deleted region 1p22.3 in mantle cell lymphomas. Genes Chromosomes Cancer., 45:883-892., 2006.
Bennett P. Demystified ... microsatellites. Mol Pathol., 53:177-183., 2000.
Berggren P, Kumar R, Sakano S, Hemminki L, Wada T, Steineck G,Adolfsson J, Larsson P, Norming U, Wijkstrom H, Hemminki K. Detecting homozygous deletions in the CDKN2A (p16(INK4a)) / ARF(p14(ARF)) gene in urinary bladder cancer using real-time quantitative PCR. Clin Cancer Res., 9:235-242., 2003.
Berg KD, Glaser CL, Thompson RE, Hamilton SR, Griffin CA, Eshleman JR. Detection of microsatellite instability by fluorescence multiplex polymerase chain reaction. J Mol Diagn., 2:20-28., 2000.
Bernard PS, Wittwer CT. Real-time PCR technology for cancer diagnostics. Clin Chem., 48:1178-1185., 2002.
Bonnen PE, Wang PJ, Kimmel M, Chakraborty R, Nelson DL. Haplotype and linkage disequilibrium architecture for human cancer-associated genes. Genome Res., 12:1846-1853., 2002.
Bustin SA, Mueller R. Real-time reverse transcription PCR (qRT-PCR) and its potential use in clinical diagnosis. Clin Sci., 109:365-379., 2005.
Cairncross JG, Ueki K, Zlatescu MC, Lisle DK, Finkelstein DM, Hammond RR, Silver JS, Stark PC, Macdonald DR, Ino Y, Ramsay DA, Louis DN. Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst., 90:1473-1479., 1998.
Canzian F, Salovaara R, Hemminki A, Kristo P, Chadwick RB, Aaltonen LA, de la Chapelle A. Semiautomated assessment of loss of heterozygosity and replication error in tumors. Cancer Res., 56:3331-3337., 1996.
Chen XQ, Stroun M, Magnenat JL, Nicod LP, Kurt AM, Lyautey J, Lederrey C, Anker P. Microsatellite alterations in plasma DNA of small cell lung cancer patients. Nat Med., 2:1033-1035., 1996.
Claij N, te Riele H. Microsatellite instability in human cancer: a prognostic marker for chemotherapy?Exp Cell Res., 246:1-10., 1999.
Collins C, Rommens JM, Kowbel D, Godfrey T, Tanner M, Hwang SI, Polikoff D, Nonet G, Cochran J, Myambo K, Jay KE, Froula J, Cloutier T, Kuo WL, Yaswen P, Dairkee S, Giovanola J, Hutchinson GB, Isola J, Kallioniemi OP, Palazzolo M, Martin C, Ericsson C, Pinkel D, Albertson D, Li WB, Gray JW. Positional cloning of ZNF217 and NABC1: genes amplified at 20q13.2 and overexpressed in breast carcinoma. Proc Natl Acad Sci U S A., 95:8703-8708., 1998.
de Kok JB, Roelofs RW, Giesendorf BA, Pennings JL, Waas ET, Feuth T,Swinkels DW, Span PN. Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes. Lab Invest., 85:154-159., 2005.
Devilee P, Cleton-Jansen AM, Cornelisse CJ. Ever since Knudson. Trends Genet., 17:569-573., 2001.
Geiger S, Holdenrieder S, Stieber P, Hamann GF, Bruening R, Ma J, Nagel D, Seidel D. Nucleosomes in serum of patients with early cerebral stroke. Cerebrovasc Dis., 21:32-37., 2006.
Gerner EW, Ignatenko NA, Lance P, Hurley LH. A comprehensive strategy to combat colon cancer targeting the adenomatous polyposis coli tumor suppressor gene. Ann N Y Acad Sci., 1059:97-105., 2005.
Ginzinger DG, Godfrey TE, Nigro J, Moore DH 2nd, Suzuki S, Pallavicini MG, Gray JW, Jensen RH. Measurement of DNA Copy Number at Microsatellite Loci Using Quantitative PCR Analysis. Cancer Res., 60:5405-5409., 2000.
Herrera LJ, Raja S, Gooding WE, El-Hefnawy T, Kelly L, Luketich JD, Godfrey TE. Quantitative analysis of circulating plasma DNA as a tumor marker in thoracic malignancies. Clin Chem., 51:113-118., 2005.
Hibi K, Robinson CR, Booker S, Wu L, Hamilton SR, Sidransky D, Jen J. Molecular detection of genetic alterations in the serum of colorectal cancer patients. Cancer Res., 58:1405-1407., 1998.
Jarvinen TA, Tanner M, Rantanen V, Barlund M, Borg A, Grenman S, Isola J. Amplification and deletion of topoisomerase IIalpha associate with ErbB-2 amplification and affect sensitivity to topoisomerase II inhibitor doxorubicin in breast cancer. Am J Pathol., 156:839-847., 2000.
Jiricny J. Mismatch repair and cancer. Cancer Surv., 28:47-68., 1996..
Kim JC, Roh SA, Koo KH, Ka IH, Kim HC, Yu CS, Lee KH, Kim JS, Lee HI, Bodmer WF. Genotyping possible polymorphic variants of human mismatch repair genes in healthy Korean individuals and sporadic colorectal cancer patients. Fam Cancer., 3:129-137., 2004.
Kindich R, Florl AR, Jung V, Engers R, Muller M, Schulz WA, Wullich B. Application of a modified real-time PCR technique for relative gene copy number quantification to the determination of the relationship between NKX3.1 loss and MYC gain in prostate cancer. Clin Chem., 51:649-652., 2005.
Kinoshita M, Nakamura J, Kusaka H, Hadama T, Bago K, Kitajima M, Baba S. Automated and simultaneous identification of microsatellite instability by fluorescence-based polymerase chain reaction (PCR) in four loci. Clin Chim Acta., 279:15-23., 1999.
Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell., 87:159-170., 1996.
Koyama M, Nagai H, Bando K, Matsumoto S, Tajiri T, Onda M, Ito M, Moriyama Y, Emi M. New target region of allelic loss in hepatocellular carcinomas within a 1-cM interval on chromosome 6q23. J Hepatol., 33:85-90., 2000.
Krieg RC, Paweletz CP, Liotta LA, Petricoin EF 3rd. Clinical proteomics for cancer biomarker discovery and therapeutic targeting. Technol Cancer Res Treat., 1:263-272., 2002.
Kurzawski G, Safranow K, Suchy J, Chlubek D, Scott RJ, Lubinski J. Mutation analysis of MLH1 and MSH2 genes performed by denaturing high-performance liquid chromatography. J Biochem Biophys Methods., 51:89-100., 2002.
Leon SA, Green A, Yaros MJ, Shapiro B. Radioimmunoassay for nanogram quantities of DNA. J Immunol Methods., 9:157-164., 1975.
Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res., 37:646-650., 1977.
Luger K. Structure and dynamic behavior of nucleosomes. Curr Opin Genet
Dev., 13:127-135., 2003.
Macgregor PF, Squire JA. Application of microarrays to the analysis of gene expression in cancer. Clin Chem., 48:1170-1177., 2002.
Maehara Y, Oda S, Sugimachi K. The instability within: problems in current analyses of microsatellite instability. Mutat Res., 461:249-263., 2001.
Mao L, Hruban RH, Boyle JO, Tockman M, Sidransky D. Detection of oncogene mutations in sputum precedes diagnosis of lung cancer. Cancer Res., 54:1634-1637., 1994.
Mao L, Schoenberg MP, Scicchitano M, Erozan YS, Merlo A, Schwab D,Sidransky D. Molecular detection of primary bladder cancer by microsatellite analysis. Science, 271:659-662., 1996.
Martins W, de Sousa D, Proite K, Guimaraes P, Moretzsohn M, Bertioli D. New softwares for automated microsatellite marker development. Nucleic Acids Res., 34:31., 2006.
Merlo A, Mabry M, Gabrielson E, Vollmer R, Baylin SB, Sidransky D. Frequent microsatellite instability in primary small cell lung cancer. Cancer Res., 54:2098-2101., 1994a.
Merlo GR, Venesio T, Taverna D, Marte BM, Callahan R, Hynes NE. Growth suppression of normal mammary epithelial cells by wild-type p53. Oncogene., 9:443-453., 1994b.
Nawroz H, Koch W, Anker P, Stroun M, Sidransky D. Microsatellite alterations
in serum DNA of head and neck cancer patients., Nat Med. 2:1035-1037., 1996.
Nielsen TO. Microarray analysis of sarcomas. Adv Anat Pathol., 13:166-173., 2006.
Nigro JM, Takahashi MA, Ginzinger DG, Law M, Passe S, Jenkins RB, Aldape
K. Detection of 1p and 19q loss in oligodendroglioma by quantitative microsatellite analysis, a real-time quantitative polymerase chain reaction assay. Am J Pathol., 158:1253-1262., 2001.
Oda S, Oki E, Maehara Y, Sugimachi K. Precise assessment of microsatellite instability using high resolution fluorescent microsatellite analysis. Nucleic Acids Res., 25:3415-3420., 1997.
Pauletti G, Godolphin W, Press MF, Slamon DJ. Detection and quantitation of HER-2/neu gene amplification in human breast cancer archival material using fluorescence in situ hybridization. Oncogene., 13:63-72., 1996.
Paulson TG, Galipeau PC, Reid BJ. Loss of heterozygosity analysis using whole genome amplification, cell sorting, and fluorescence-based PCR. Genome Res., 9:482-491., 1999.
Pritzker KP. Cancer biomarkers: easier said than done. Clin Chem., 48:1147-1150
., 2002.
Raggi CC, Bagnoni ML, Tonini GP, Maggi M, Vona G, Pinzani P, Mazzocco K, De Bernardi B, Pazzagli M, Orlando C. Real-time quantitative PCR for the measurement of MYCN amplification in human neuroblastoma with the TaqMan detection system. Clin Chem., 45:1918-1924., 1999.
Rengarajan K, Cristol SM, Mehta M, Nickerson JM. Quantifying DNA concentrations using fluorometry: a comparison of fluorophores. Mol Vis., 8:416-421., 2002.
Rubie H, Hartmann O, Michon J, Frappaz D, Coze C, Chastagner P, Baranzelli MC, Plantaz D, Avet-Loiseau H, Benard J, Delattre O, Favrot M, Peyroulet MC, Thyss A, Perel Y, Bergeron C, Courbon-Collet B, Vannier JP, Lemerle J, Sommelet D. N-Myc gene amplification is a major prognostic factor in localized neuroblastoma: results of the French NBL 90 study. Neuroblastoma Study Group of the Societe Francaise d'Oncologie Pediatrique. J Clin Oncol., 15:1171-1182., 1997.
Sanchez-Cespedes M, Monzo M, Rosell R, Pifarre A, Calvo R, Lopez-Cabrerizo MP, Astudillo J. Detection of chromosome 3p alterations in serum DNA of non-small-cell lung cancer patients. Ann Oncol., 9:113-116., 1998.
Saxena S, Chakraborty A, Kaushal M, Kotwal S, Bhatanager D, Mohil RS, Chintamani C, Aggarwal AK, Sharma VK, Sharma PC, Lenoir G, Goldgar DE, Szabo CI. Contribution of germline BRCA1 and BRCA2 sequence alterations to breast cancer in Northern India. BMC Med Genet., 7:75., 2006.
Schuelke M. An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol., 18:233-234., 2000.
Simpson A. Communciation at the 17th Internal Cancer Congress. Rio de Janeiro, Brazil., August 1998.
Singhal H, Bautista DS, Tonkin KS, O'Malley FP, Tuck AB, Chambers AF, Harris JF. Elevated plasma osteopontin in metastatic breast cancer associated with increased tumor burden and decreased survival. Clin Cancer Res., 3:605-611., 1997.
Smith JS, Perry A, Borell TJ, Lee HK, O'Fallon J, Hosek SM, Kimmel D, Yates A, Burger PC, Scheithauer BW, Jenkins RB. Alterations of chromosome arms 1p and 19q as predictors of survival in oligodendrogliomas, astrocytomas, and mixed oligoastrocytomas. J Clin Oncol., 18:636-645., 2000.
Srinivas PR, Kramer BS, Srivastava S. Trends in biomarker research for cancer detection. Lancet Oncol., 2:698-704., 2001a.
Srinivas PR, Srivastava S, Hanash S, Wright GL Jr. Proteomics in early detection of cancer. Clin Chem., 47:1901-1911., 2001b.
Starinsky S, Figer A, Ben-Asher E, Geva R, Flex D, Fidder HH, Zidan J, Lancet
D, Friedman E. Genotype phenotype correlations in Israeli colorectal cancer patients. Int J Cancer., 114:58-73., 2005.
Sturgeon C. Practice guidelines for tumor marker use in the clinic. Clin Chem., 48:1151-1159., 2002.
Su YW, Huang YW, Chen SH, Tzen CY. Quantitative analysis of plasma HBV DNA for early evaluation of the response to transcatheter arterial embolization for HBV-related hepatocellular carcinoma. World J Gastroenterol., 21:11:6193-6196., 2005.
Suzuki N, Yoshida A, Nakano Y. Quantitative analysis of multi-species oral biofilms by TaqMan Real-Time PCR. Clin Med Res., 3:176-185., 2005.
Suzuki S, Egami K, Sasajima K, Ghazizadeh M, Shimizu H, Watanabe H, Hasegawa H, Iida S, Matsuda T, Okihama Y, Hosone M, Shimizu K,Kawanami O, Tajiri T. Comparative study between DNA copy number aberrations determined by quantitative microsatellite analysis and clinical outcome in patients with stomach cancer. Clin Cancer Res., 10:3013-3019., 2004.
Tanner MM, Tirkkonen M, Kallioniemi A, Holli K, Collins C, Kowbel D, Gray JW, Kallioniemi OP, Isola J. Amplification of chromosomal region 20q13 in invasive breast cancer: prognostic implications. Clin Cancer Res., 1:1455-1461., 1995.
Thiagalingam S, Foy RL, Cheng KH, Lee HJ, Thiagalingam A, Ponte JF. Loss of heterozygosity as a predictor to map tumor suppressor genes in cancer: molecular basis of its occurrence. Curr Opin Oncol., 14:65-72., 2002.
Valasek MA, Repa JJ. The power of real-time PCR. Adv Physiol Educ., 29:151-159., 2005.
Westermann F, Schwab M. Genetic parameters of neuroblastomas. Cancer Lett., 84:127-147., 2002.
Wong LJ, Bai RK. Real-time quantitative polymerase chain reaction analysis of mitochondrial DNA point mutation. Methods Mol Biol., 335:187-200., 2006.
Wu CL, Roz L, Sloan P, Read AP, Holland S, Porter S, Scully C, Speight PM, Thakker N. Deletion mapping defines three discrete areas of allelic imbalance on chromosome arm 8p in oral and oropharyngeal squamous cell carcinomas. Genes Chromosomes Cancer., 20:347-353., 1997.
Zeerleder S. The struggle to detect circulating DNA. Crit Care., 10:142., 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文