(18.204.2.190) 您好!臺灣時間:2021/04/19 08:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:華鈞毅
研究生(外文):Hua Chun-Yi
論文名稱:車身網路之資料通訊協定應用於車輛電子資訊系統
論文名稱(外文):Applications of Data Communication Protocol to Vehicle Information Systems Based on CAN
指導教授:楊介仙
指導教授(外文):Young Jieh-Shian
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:車輛科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:100
中文關鍵詞:控制區域網匯流排通用型CANBus硬體資料通訊協定線上替換單元(Line Replaceable UnitLRU)車輛電子資訊系統
外文關鍵詞:CAN busgeneric CAN unitdata communication protocolLRUvehicle information systems
相關次數:
  • 被引用被引用:0
  • 點閱點閱:259
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
控制器區域網路匯流排(Controller Area Network, CAN)提供高速數據與高穩定性資料傳送,適合應用於高速之工業自動控制或車輛電子系統網路,CANBus亦可在同一網絡上連接多種不同功用之系統及單元,如感知器(節汽門位置感知器、曲軸位置感知器等)或制動器等。本文主要之研究為建議CANBus之資料通訊協定,以提高資料傳輸效率與實現系統線上替換單元(Line Replaceable Unit, LRU)之功能,如透過CANBus線上替換CANBus節點之參數(如masks, filters, and arbitrations),期能降低系統元件之研發、製造及維修成本。CANBus每筆資料傳輸封包中,包含8位元組之資料區域,為了分析與驗證之便利,資料通訊協定之規劃乃採用最大之資料傳輸量,運用模擬車輛電子系統之訊號,透過CANBus之資料傳輸,驗證其可行性與便利性。本文中所提之車輛電子資訊系統構想係運用線上替換單元為基礎,建構CANBus之通用硬體,且於各單元間以CANBus為資料傳輸之媒介,其中包含訊號模擬單元、整合控制單元、衛星定位系統單元(Global Positioning System, GPS)及整合封包無線電服務單元(General Packet Radio Service, GPRS)等。
The Controller Area Network Bus (CANBus) is a serial, asynchronous, multi-master communication protocol. It can be used to connect the electronic control modules, sensors, and actuators in many industrial applications. This thesis mainly studies the data communication protocols of CAN for the vehicle information systems. The objective is to create the environment of the line replaceable unit (LRU) in these systems. The hardware of each CAN node is recommended to be the same in order to reduce the cost of research, development, manufactures, and maintenance. The data transmitted from CANBus are one of the valuable resources. There are 8 bytes of them in each transmission. For the sake of analysis, the 8-byte data length may be adopted in rigorous cases. If they are appropriately planned, the data communication protocol can improve the efficiency of the communication, e.g., arbitrations, masks, filters of nodes for CAN can be assigned arbitrarily on line. Even the software of CAN unit can be upgraded and downloaded on-line, too. Upon the above concept, this thesis will propose a feasible configuration of the vehicle information systems as well as a kind of possible data communication protocols.
Abstract (Chinese) i
Abstract (English) ii
Contents iv
List of Figures vii
List of Tables x
Chapter 1 Introduction 1
Chapter 2 Controller Area Network 4
2-1 CAN Concept and Mechanism 5
2-2 Frame Type 7
2-2-1 Data Frame 8
2-2-2 Remote Frame 10
2-2-3 Error Frame 11
2-2-4 Overload Frame 12
2-2-5 Intermission Space 13
2-3 Arbitration 14
2-4 Error Detecting 15
2-5 Fault Confinement 16
2-6 Advantages and Disadvantages 18
2-7 SAE J1939 18
Chapter 3 Problem Definition 22
3-1 CAN Limitation 22
3-2 Communication problem 23
Chapter 4 Data Communication Protocol and Group Master Architecture 26
4-1 Removal of CAN Limitations 26
4-2 Data Communication Protocol 28
4-3 Group Master Architecture 34
Chapter 5 An Implementation of The Proposed Approach 37
5-1 Generic Unit for CAN Network 37
5-2 A Feasible Hardware of Generic Unit for CAN Network 39
5-2-1 Voltage Regulators- L7805 40
5-2-2 Micro Controller- AT89S51 41
5-2-3 External Memory- EEPROM X2816 44
5-2-4 CAN Controller- SJA1000 46
5-2-5 CAN Transceiver- PC82C251 49
5-2-6 Design CAN Circuit 52
5-3 Simulation of Automotive Electronic System Board 53
5-3-1 Function of Automotive Electronic System Board 54
5-3-2 CAN Network Layout for Automotive Electronic System Board 55
Chapter 6 Test and Analyses 58
6-1 Hardware Test 58
6-1-1 Initialization 58
6-1-2 Transmission process 60
6-1-3 Reception process 61
6-1-4 ATE Function 62
6-2 Analyses of Response Times 67
6-2-1 Peer-to-Peer communication 67
6-2-2 Round-way communication 73
6.3 Remarks of hardware test and response times for the CAN communication 79
Chapter 7 Conclusions and Further Researches 81
References 83
Appendix 87
Publication 100
[1] Robert Bosch GmbH, “CAN Specification Version 2.0”, September 1991.
[2] Robert Bosch GmbH, “C_CAN User’s Manual, 2000”, [Online]. Available: http://www.bosch.de/de_e/.../prod/can/docu/Users_Manual_C_CAN.pdf.
[3] J. Schill, “An overview of the CAN protocol,” Embedded System Programming, vol. 10, pp. 46-62, 1997.
[4] W. Lawrenz, CAN System Engineering: From Theory to Practical Applications, New York: Spring-Verlag, 1997.
[5] N. Navet,, “Controller area network: CANs use within automobiles,” IEEE Potentials, vol.17, 1999, pp. 12-14.
[6] L. Chaari, N. Masmoudi, and L. Kamoun, “Electronic control in electric vehicle based on CAN network,” IEEE Conference on Systems, Man and Cybernetics, vol. 7, 2002, pp. 4-7.
[7] X. Wang, C. Chen, and H. Ding, “The Application of Controller Area Network on Vehicle,” Proceedings of the IEEE International Vehicle Electronics Conference, 1999(IVEC’99), vol.1, 1999, pp. 455-458.
[8] K. Etschberger, Controller Area Network, Germany: IXXAT Press, 2001.
[9] M. Farsi, K Ratcliff, and M. Barbosa, “An overview of Controller Area Network,” Computing & Control Engineering Journal, vol.10, June 1999, pp. 113-120.
[10] K.C. Lee and H.H. Lee, “Network-based fire-detection system via controller area network for smart home automation,” IEEE Transactions on Consumer Electronics, vol. 50, 2004, pp. 1093 – 1100.
[11] C.E. Lin, C.C. Li, A.S. Hou, and C. C. Wu, “A Real Time Remote Control Architecture using Mobile Communication,” IEEE Transactions on Instrumentation and Measurement, vol. 52, 2003, pp. 997-1003.
[12] D. Dowling and T.L. Rupinski, “Avionics Maintenance 2010,” IEEE Transactions on Selected Areas in Communications, vol. SAC-4, 1986, pp. 1090-1096.
[13] G.T. Beck and C. Huff, “C-17 automatic test system operations versatile automated test equipment,” Proceedings of AUTOTESTCON '96, 1996, pp. 358-360.
[14] M.D. Sudolsky, “C-17 O-level fault detection and isolation bit improvement concepts,” Proceedings of AUTOTESTCON '96, 1996, pp. 361-368.
[15] M.D. Sudolsky, “The fault recording and reporting method,” Proceedings of AUTOTESTCON '98, 1998, pp. 429 – 437.
[16] L.V. Kirkland and R.G. Wright, “Nanotechnology impact on aircraft design and maintenance,” Proceedings of AUTOTESTCON '02, 2002, pp. 769-776.
[17] 楊介仙、華鈞毅,“車身網路之資料通訊協定應用於車輛電子資訊系統”,第十一屆車輛工程學術研討會,E-1,民國九十六年十一月。
[18] J.S. Young and C.Y. Hua, “Applications of Data Communication Protocol to Vehicle Information Systems Based on CAN,” Proceedings on International MultiConference of Engineers and Computer Scientists 2007 (IMECS 2007), Hongkong, 2007, pp. 1415-1420.
[19] ISO 11898, “Road Vehicle - Interchange of Digital Information - Controller Area Network (CAN) for High-Speed Communication,” ISO, 1993.
[20] K.M. Zuberi and K.G. Shin, “Non-Preemptive Scheduling of Messages on Controller Area Network for Real-Time Control Applications,” Proceedings of Real-Time Technology and Applications symposium, 1995, pp. 240-249.
[21] K.M. Zuberi and K.G. Shin, “Scheduling Messages on Controller Area Network for Real-Time CIM Applications,” IEEE Transactions on Robotics and Automation, vol. 13, pp. 310-314, Apr. 1997.
[22] K.M. Zuberi and K.G. Shin, “Design and implementation of efficient message scheduling for control area network,” IEEE Transactions on Computers, vol. 49, 2000, pp. 182-188.
[23] J. Nan, L. Zai, Z. Wang, and J. Wang, “Bus Communication and Control Protocol Using the Electric Passenger Car Control System,” The Sixth World Congress on Intelligent Control and Automation, vol. 2, 2006, pp. 8288-8291.
[24] SAE Standard, Vehicle Application Layer SAE J1939/71, 1996.
[25] SAE Standard, Vehicle Application Layer SAE J1939/11, 1996.
[26] SAE Standard, Vehicle Application Layer SAE J1939/21, 1996.
[27] SAE Standard, Vehicle Application Layer SAE J1939/73, 1996.
[28] SAE Standard, Vehicle Application Layer SAE J1939/81, 1996.
[29] Atmel Corp., (2005). “AT89S51 8-bit Microcontroller,” [Online]. Available: http://www.atmel.com/dyn/resources/prod_documents/doc2487.pdf
[30] Philips Corp., (1997). “SJA1000 Stand-alone CAN Controller,” [Online]. Available: http://www.semiconductors.philips.com/acrobat/datasheets/SJA1000_3.pdf.
[31] Philips Corp., (1997). “Application Note SJA1000 Stand-alone CAN Controller,” [Online]. Available:
http://www.nxp.com/acrobat/applicationnotes/AN97076.pdf.
[32] Philips Corp., (2000). “PCA82C251 CAN Controller Interface,” [Online]. Available:
http://www.nxp.com/acrobat/datasheets/PCA82C251_3.pdf.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 沈進成、謝金燕(2003):宗教觀光吸引力、滿意度與忠誠度關係之研究-以高雄佛光山為例。旅遊管理研究,3(1),79-95。
2. 沈進成、陳伯南(2005):宗教觀光旅遊動機、認知價值、滿意度與忠誠度關係之研究-以南投中臺禪寺為例。服務業管理評論,1(1),159-183。
3. 黃宗成、黃躍雯、余幸娟(2000):宗教觀光客旅遊動機、期望、滿意度關係之研究。戶外遊憩研究,13(3),23-48。
4. 黃宗成、沈進成、翁廷碩、戴宜臻(2002):雪域明珠-西藏:宗教觀光客旅遊動機與其滿意度之研究。旅遊管理研究,2(1),23-42。
5. 黃宗成、沈進成、李謀監(2001):宗教觀光之發展與研究。旅遊管理研究,1(1),125-142。
6. 許義忠(2002):遊客對參加冒險性旅遊之動機與滿意度之研究-以秀姑巒溪泛舟為例。觀光研究學報,8(2), 115-130。
7. 張珣(2002):從媽祖神話與儀式看-媽祖信仰的俗民性質。北縣文化,72,12-13。
8. 陳璋玲、伍亮帆(2006):嘉義市國際管樂節活動吸引力、滿意度與忠誠度關係及願付價格之研究。旅遊管理研究,6(1),101-123。
9. 陳勁甫、何宜澤(2005):事件遊客旅遊動機、活動體驗品質、滿意度與行為意向之研究—以「2004府城七夕國際藝術節」為例。餐旅暨家政學刊,2(2),161-179。
10. 侯錦雄、郭彰仁(1998):香客與戶外遊憩者之遊憩衝突探討以松柏嶺宗教觀光區為例。戶外遊憩研究,11(2),1-18。
11. 林茂賢(2002):臺灣媽祖傳說及其本土化現象。靜宜人文學報,17,91-113。
12. 林永森、林博文、周少凱(2006):運動與宗教觀光動機、行前期望、重視程度、滿意度與忠誠度之研究。運動休閒餐旅研究,1(2), 119-150。
13. 吳忠宏、黃宗成、邱廷亮(2004):玉山國家公園遊客旅遊動機、滿意度與重遊意願之研究。國家公園學報,14(2), 23-41。
14. 李宗鴻(2005):國家森林遊樂區遊客遊憩體驗之研究。真理觀光學報,3,49-72.
15. 李宗鴻(2003):台灣離島島嶼遊客遊憩體驗之研究。旅遊管理研究,3(2),51-66.
 
系統版面圖檔 系統版面圖檔