跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/05 20:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃清白
論文名稱:降低高功率雷射二極體發散角之最佳化結構研究
論文名稱(外文):Optimal Structures for Reduction of Far-field Beam Divergence Angles of High Power Laser Diodes
指導教授:黃滿芳
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:124
中文關鍵詞:雷射二極體遠場發散角
相關次數:
  • 被引用被引用:0
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要探討如何降低780 nm砷化鋁鎵高功率雷射二極體遠場繞射角度,以降低雷射光點的aspect ratio,使雷射光點以近似圓點輸出,提升光耦合效率;降低遠場繞射角度的同時,因使活性區光侷限程度降低,可提升對產生災難性光損害的容許度,進一步提升雷射輸出功率。
第一章先針對降低高功率雷射二極體遠場發散角的研究做回顧。第二章是使用LASTIP模擬軟體來分析降低遠場繞射角對雷射特性的影響,首先利用低折射率層結構來降低遠場繞射角,結果顯示遠場發散角度有明顯的下降,但是雷射的slope efficiency下降,造成在高功率操作下雷射性能降低。第三章則是在n-side披覆層處,插入具V-shape折射率變化的遠場繞射角降低層,研究結果發現,使用遠場繞射角降低層藉由披覆層光場的改變,可以有效降低遠場發散角,且維持雷射高功率操作性能,最後並找到遠場繞射角降低層的最佳化結構。
使用遠場繞射角降低層來降低遠場繞射角度,主要藉由三個參數交互調整以達到小角度的遠場繞射角,其中遠場繞射角降低層與活性層之間的最佳距離為0.6 μm ;而遠場發散角隨著遠場繞射角降低層厚度的增加而變小,最大的合理值約為2μm;遠場繞射角降低層V-shape的中心鋁成份為0.45時,亦可得到維持lasing 前的最小遠場繞射角,最佳化結構則為綜合這三個參數的結構,遠場繞射角度約為14.6°。最後探討遠場繞射角降低層放在n-side或p-side披覆層的比較,研究顯示如果n-side與p-side披覆層都放上遠場繞射角降低層,可得到更小的13°的遠場繞射角度,臨界電流則上升不到1 mA。
In this thesis, the optimal structure for reduction of far-field beam divergence angles of high power AlGaAs laser diodes (LDs) emitting at 780 nm was investigated. By reducing far-field beam divergence angles, the aspect ratio of laser beam can be closed to one and hence, the coupling efficiency of laser light can be improved. Moreover, the power level to cause catastrophic optical damage (COD) can be increased due to the reduction of optical confinement in the near field pattern when far-field beam divergence angles are reduced.
In chapter one, some efforts, which were done for reduction of high power LDs’ far-field beam divergence angles, will be first reviewed. In chapter two, the effect of low-index layers on the reduction of far-field beam divergence for 780-nm AlGaAs LDs using LASTIP simulation software is theoretically analyzed. Simulation results indicate that far-field beam divergence angles can be reduced effectively by using low-index layer structures. However, the performance of 780-nm AlGaAs LDs, especially the slope efficiency in power-versus-current characteristic, also degrades. To solve this difficulty, a v-shape far-field reduction layer (FRL) is inserted in the n-cladding layer. In chapter three, optimization for FRL parameters and LD performance using FRL layers will be discussed.
Several FRL parameters need to be optimized including the separation between FRL and optical guiding layer, FRL thickness and Al composition at the middle point of V-shape AlGaAs FRL. Simulation result shows that the optimum separation between FRL and optical guiding layer is 0.6 μm. Moreover, with increase in FRL thickness, the vertical far-field divergence angle is continuously decreased. A FRL thickness of 2 μm is a reasonable value for high power laser diode. Finally, Al0.45Ga0.55As is chosen to be the material at the middle point of v-shape FRL owing to the smallest divergence angle can be achieved while LD still maintains lasing in the active layer. The smallest vertical angle for this optimized structure is 14.6°. Furthermore, the effect of a v-shape FRL incorporated in p-side cladding layer is also analyzed and compared with the results inserted in n-side cladding. Theoretical analysis shows that with FRL inserted at the both sides of cladding layers, a very low beam divergence of 13°can be achieved with negligible increase in slope efficiency and threshold current.
誌謝 II
中文摘要 i
ABSTRACT ii
圖表索引 iv
第一章 高功率雷射二極體介紹 1
1.1 前言 1
1.2 半導體雷射的發展 2
1.3 提升COD level 4
1.3.1 Window-Mirror結構 4
1.3.2 量子井個數多寡對活性區內光場分佈的影響 5
1.3.3 不同波導厚度下對活性區光場分佈的影響 6
1.3.4 增加披覆層厚度及腔長長度來提升COD level 9
1.4 降低遠場發散角 13
1.4.1 使用低折射率層來降低遠場繞射角度 14
1.4.2 使用不對稱披覆層結構來降低遠場繞射角度 19
1.4.3 使用遠場繞射角降低層來降低遠場繞射角度 28
1.5 總結 36
第二章 使用低折射率層來降低780 nm雷射二極體遠場繞射角 40
2.1 研究動機 40
2.2 模擬軟體簡介 41
2.3 使用低折射率層來降低遠場繞射角 43
2.3.1 模擬元件結構 44
2.3.2 固定低折射率層的厚度,改變低折射率層的鋁含量 48
2.3.3 固定低折射率層的鋁含量,改變低折射率層的厚度 56
2.4 總結 66
第三章 使用遠場繞射角降低層來降低780 nm雷射二極體遠場繞射角 68
3.1 研究動機 68
3.2 模擬元件結構 69
3.2.1 FRL結構與活性層之間最佳化距離 71
3.2.2 FRL厚度的影響 75
3.2.3 FRL V-shape中心材料組成的影響 80
3.3 FRL結構放在不同的批覆層方向 88
3.4 總結 93
第四章 結論 96
附錄A 論文發表清單 98
附錄B 論文中所使用的模擬程式 99
附錄C 模擬AlGaAs與GaAs異質接面的注意事項 107
[1] K. Iga and S. Kinoshita, Process Technology for Semiconductor Lasers: Crystal Growth and Microprocesses, Springer Verlag, Berlin, Germany, 1996.
[2] D. F. Welch, “A brief of high-power semiconductor lasers,” IEEE J. Select. Topics Quantum Electron., Vol. 6, pp. 1470-1477, 2000.
[3] G. P. Agrawal, Semiconductor Lasers: Past, Present, and Future, American Institute of Physics, USA, 1994.
[4] A. Shima, H. Tada, T. Motoda, M. Tsugami, T. Utakouji and H. Higuchi, “Reliability study on 50~100 mW CW operation of 680 nm visible laser diodes with a window–mirror structure,” IEEE J. Select. Topics Quantum Electron., Vol. 3, pp. 443-449, 1997.
[5] A. Shima, H. Tada, T. Motoda, M. Tsugami, T. Utakouji and H. Higuchi, “Highly reliable 60℃ 50 mW operation of 650 nm band window–mirror laser diodes,” IEEE Photon. Technol. Letters, Vol. 9, pp. 413-415, 1997.
[6] 史光國,現代半導體發光及雷射二極體材料技術,全華科技圖書, 3–39頁,2002.
[7] N. Lichtenstein, R. Winterhoff, F. Scholz, H. Schweizer, S. Weiss, M. Hutter and H. Reichl, “The impact of LOC structures on 670 nm (Al)GaInP high-power lasers,” IEEE J. Select. Topics Quantum Electron., Vol. 6, pp. 564-570, 2000.
[8] T. Yagi, H. Nishiguchi, Y. Yoshida, M. Miyashita, M. Sasaki, Y. Sakamoto, K. Ono and Y. Mitsui, “High–power high–efficiency 660 nm laser diodes for DVD–R/RW,” IEEE J. Select. Topics Quantum Electron., Vol. 9, pp. 1260-1264, 2003.
[9] T. M. Cockerill, J. Honig, T. A. DeTemple and J. J. Coleman, “Depressed index cladding graded barrier separate confinement single quantum well heterostructure laser,” Appl. Phys. Lett., Vol. 59, pp. 2694-2696, 1991.
[10] T. Temmyo and M. Sugo, “Design of high-power strained InGaAs/AlGaAs quantum well lasers with a vertical divergence angle of 18°,” Electron. Lett., Vol. 31, pp. 642-644, 1995.
[11] S. T. Yen and C. P. Lee, “A novel cladding structure for semiconductor quantum-well lasers with small beam divergence and low threshold current,” IEEE J. Quantum Electron., Vol. 32, pp. 1588-1595, 1996.
[12] G. Lin, S. T. Yen and C. P. Lee, “Extremely small vertical far-field angle of InGaAs-AlGaAs quantum-well lasers with specially designed cladding structure,” IEEE Photon. Technol. Letters, Vol. 8, pp. 1588-1590, 1996.
[13] T. Hashimoto, O. Imafuji, T. Takayama, M. Yuri, A. Yoshikawa and K. Itoh, “Reduction of beam divergence angle by low-refractive-index layers introduced to real-refractive-index-guided GaAlAs high-power laser diodes,” Jpn. J. Appl. Phys., Vol. 36, pp. 2676-2680, 1997.
[14] K. Shigihara, K. Kawasaki, Y. Yoshida, S. Yamamura, T. Yagi and E. Omura, “High-power 980-nm ridge waveguide laser diodes including an asymmetrically expanded optical field normal to the active layer,” IEEE J. Quantum Electron., Vol. 38, pp. 1081-1088, 2002.
[15] Y. Yoshida, H. Nishiguchi, M. Sasaki, S. Abe, A. Ohno, M. Miyasita, K.-I. Ohno, T. Yagi and E. Omura, “Vertical beam quality of 660 nm AlGaInP laser diodes with asymmetric cladding layer,” in Proc. 3rd IEEE Int. Conf. Numerical Simulation of Semiconductor Optoelectronic Devices, pp. 39-40, 2003.
[16] S. Cho, Y. Park and Y. Kim, “660 nm GaInP–AlGaInP quantum-well laser diode structures with reduced vertical beam divergence angle,” IEEE P. Technology Lett., Vol. 17, pp. 534-536, 2005.
[17] B. Ma, S. Cho, C. Lee, Y. Kim and Y. Park, “High-power 660-nm GaInP–AlGaInP laser diodes with low vertical beam divergence angles,” IEEE P. Technology Lett., Vol. 17, pp. 1375-1377, 2005.
[18] Y. C. Chen, R. G. Waters and R. J. Dalby, “Single quantum-well laser with 11.2 degree transverse beam divergence,” Electron. Lett., Vol. 26, pp. 1348-1350, 1990.
[19] Y. C. Chen, R. G. Waters and R. J. Dalby, “Single quantum well laser with vertically integrated passive waveguides,” Appl. Phys. Lett., Vol. 56, pp. 1409-1411, 1990.
[20] P. M. Smowton, G. M. Lewis, M. Yin, H. D. Summers, G. Berry and C. C. Button, “650-nm lasers with narrow far-field divergence with integrated optical mode expansion layers,” IEEE J. Quantum Electron., Vol. 5, pp. 735-739, 1999.
[21] B. Qiu, S. D. McDougall, X. Liu, G. Bacchin and J. H. Marsh, “Design and fabrication of low beam divergence and high kink-free power lasers,” IEEE J. Quantum Electron., Vol. 41, pp. 1124-1130, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top