(3.215.183.251) 您好!臺灣時間:2021/04/22 22:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴信吉
研究生(外文):Hsin-Chi Lai
論文名稱:應用於平面液晶顯示器驅動電路之源極與閘極輸出緩衝器之晶片設計
論文名稱(外文):Chip Design of Source and Gate Output Buffers for TFT-LCD Driver Applications
指導教授:林志明林志明引用關係
指導教授(外文):Zni-Ming Lin
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:積體電路設計研究所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:68
中文關鍵詞:薄膜液晶平面顯示器源極驅動器閘極驅動器緩衝器參考電壓源
外文關鍵詞:TFT-LCDSource driverGate driverBufferVoltage reference
相關次數:
  • 被引用被引用:0
  • 點閱點閱:241
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的目標在於薄膜電晶體平面液晶顯示器(TFT-LCD)之驅動晶片設計。TFT-LCD驅動電路有兩種:源極驅動器和閘極驅動器。首先,提出一個應用在源極驅動器的輸出緩衝器或數位類比轉換器之參考電壓電路,利用大小相同的N型電晶體和P型電晶體的閘-源極電壓,因為受溫度影響的切入電壓和遷移率已被互補抵消,所以獲得不隨溫度變化的穩定輸出電壓,在溫度範圍-70℃~150℃時的溫度係數小於0.68 ppm/℃。
第二部份,提出一個應用在高解析度TFT-LCD源極驅動器的高迴轉率、低功率與低抵補電壓之高驅動能力CMOS之軌對軌輸出類比緩衝器,具有互補式疊接差動輸入對,及共源極推拉輸出端和輔助電晶體的架構,擁有低功率、高驅動能力的效能;在3.3 V的操作電壓,驅動1 nF的大電容時,上升與下降迴轉率可達到20 V/μs和18 V/μs,靜態電流為1 μA,抵補電壓為2.5 mV。
第三部份,我們提出一個驅動高負載的TFT-LCD閘極驅動器之全擺幅輸出數位緩衝器,利用互捕式雙提升技術(CDUB)來提升驅動能力,模擬結果顯示在驅動TFT-LCD UXGA規格的掃瞄線面板下,在操作電壓5 V時的延遲時間皆小於2.8 μs,功率消耗只有0.74 mW。
In this thesis, we focus on the design of driver circuits for TFT-LCD display. The driver circuits of TFT-LCD are composed of two parts, the source driver and the gate driver. First, we propose a CMOS voltage reference circuit, which is designed for CMOS output buffer or DAC of TFT-LCD source drivers. The temperature-stable voltage reference is based on the same magnitude of gate-source voltage of NMOS and PMOS transistors that provides the temperature-compensation mechanism for the variations of threshold voltage and mobility. It gives a temperature coefficient of less than 0.68 ppm/℃ from -70℃ to 150℃.
Second, we propose a high driving capability CMOS rail-to-rail output analog buffer with high slew-rate, low power and low offset voltage for high resolution TFT-LCD source drivers. Low power and high driving capability are achieved by using a telescope-cascode based complementary differential input stage combing with a common source push-pull stage and two auxiliary driving transistors. The output buffer attained 20 V/μs and 18 V/μs rising/falling slew-rates, 1 μA static current, and 2.5 mV offset voltage for 1 nF load capacitance with a power supply of 3.3 V.
Third, we propose a high-speed full-swing output digital driver for heavy-loads TFT-LCD gate drivers. High driving capability is achieved by using a Complementary Dual-Bootstrap (CDUB) technique. Measured results indicate that the delay time is within 2.8 μs for the scan-line load modeling of TFT-LCD UXQA panel in a 5 V supply voltage. The obtained average power is 0.74 mW.
摘要…………………………………………………………………i
ABSTRACT……………………………………………………………ii
謝誌………………………………………………………………iii
TABLE OF CONTENTS………………………………………………iv
LIST OF FIGURES…………………………………………………vi
LIST OF TABLES…………………………………………………x

CHAPTER 1 INTRODUCTION……………………………………………1
1-1 Motivation……………………………………………1
1-2 Organization of the Thesis………………………4
CHAPTER 2 TFT-LCD FUNDAMENTALS………………………………5
2-1 What are Liquid Crystals…………………………5
2-2 LCD Panel Structure…………………………………8
2-3 Driving Principle……………………………………11
2-4 Basic Functions of TFT-LCD Driver………………13
2-4-1 Source Driver……………………………13
2-4-2 Gate Driver…………………………………14
CHAPTER 3 VOLTAGE REFERENCE…………………………………………16
3-1 Background………………………………………………16
3-2 Circuit Design…………………………………………17
3-2-1 Power Supply Independent………………17
3-2-2 Temperature-Stable………………………17
3-3 Simulation Results……………………………………23
3-4 Concluding Remarks……………………………………27
CHAPTER 4 OUTPUT BUFFER OF TFT-LCD SOURCE
DRIVER………………………………………………28
4-1 Background…………………………………………………28
4-2 Circuit Design………………………………………29
4-3 Results………………………………………………34
4-3-1 Simulation Results………………………34
4-3-2 Measurement Results………………………34
4-3-3 Comparison…………………………………35
4-4 Concluding Remarks…………………………………43
CHAPTER 5 OUTPUT BUFFER OF TFT-LCD GATE DRIVER……………44
5-1 Background……………………………………………44
5-2 Circuit Design………………………………………47
5-2-1 Bootstrap Technique……………………47
5-2-2 Operation…………………………………47
5-2-3 Comparison………………………………48
5-3 Results………………………………………………54
5-3-1 Simulation Results………………………54
5-3-2 Measurement Results……………………54
5-4 Concluding Remarks………………………………62
CHAPTER 6 CONCLUSIONS……………………………………………63
REFERENCES…………………………………………………………65
[1] Albert Leung, “Source driver solution for TFT large size display,” Display Devices, no. 35, Jun. 2004.
[2] C.-W. Lu and K.-J. Hsu, “A high-speed low-power rail-to-rail column driver for AMLCD application,” IEEE J. of Solid-State Circuits, vol. 39, no. 8, pp. 1313–1320, Aug. 2004.
[3] E. Lueder, Liquid Crystal Display, John Wiley & Sons, Inc., ISBN: 0-471-49029-6, 2001.
[4] 黃素真, 液晶顯示器, 科學發展月刊, 349卷, 30–37頁, 民國九十一年.
[5] 許維仁, 應用低溫多晶矽製程實現之液晶顯示器驅動電路, 國立交通大學電子工程系碩士論文, 民國九十二年.
[6] http://www.ie.thit.edu.tw/news/TFT-LCD.ppt
[7] 汪芳興, 平面顯示器驅動原理及線路分析, 財團法人自強工業科學基金會, 專業及技術人才培訓計畫講義, 民國九十五年八月.
[8] J.-H. Kim, B.-D. Choi, and O.-K. Kwon, “1-billion-color TFT-LCD TV with Full HD format,” IEEE Transactions on Consumer Electronics, vol. 51, no. 4, Nov. 2005.
[9] K. N. Leung and P. K. T. Mok, “A sub-1-V 15-ppm/℃ CMOS bandgap voltage reference without requiring low threshold voltage device,” IEEE J. Solid-State Circuits, vol. 37, pp. 526–530, Apr. 2002.
[10] J. Wang, X. Lai, Z. Jie, and X. Guo, “A novel low-voltage low-power CMOS voltage reference based on subthreshold MOSFETs,’’ ASICON, vol. 1, pp. 369–373, Oct. 2005.
[11] Behzad Razavi, Design of Analog CMOS Integrated Circuits, New Work: McGraw-Hill, 2001.
[12] Y. P. Tsividis, Operation and Modeling of the MOS Transistor, New Work: McGraw-Hill, 1987.
[13] L. Najafizadeh and I. M. Filanovsky, “A simple voltage reference using transistor with ZTC point and PTAT current source,” ISCAS, vol. 1, pp. I–909–911, May 2004.
[14] G. Di Naro, G. Lombardo, C. Paolino, and G. Lullo, “A low-power fully-MOSFET voltage reference generator for 90 nm CMOS technology,” ICICDT, pp.1–4, May 24–26, 2006.
[15] L. H. Carvalho Ferreira and T. Cleber Pimenta, “A CMOS voltage reference based on threshold voltage for ultra low-voltage and ultra low-power,” Microelectronics, pp. 10–12, Dec. 2005.
[16] S. K. Kim, Y.-S. Son, and G. H. Cho, “Low-power high-slew-rate CMOS buffer amplifier for flat panel display drivers,” Electron. Lett., vol. 42, no. 4, pp. 214–215, 2006.
[17] P.-C. Yu and J.-C. Wu, “A class-B output buffer for flat-panel-display column driver,” IEEE J. Solid-State Circuits, vol. 34, no. 1, pp. 116–119, 1999.
[18] C.-W. Lu and K.-J. Hsu, “A high-speed low-power rail-to-rail column driver for AMLCD application,” IEEE J. of Solid-State Circuits, vol. 39, no. 9, pp. 1313–1320, 2004.
[19] C.-W. Lu, “High-speed driving scheme and compact high-speed low-power rail-to-rail class-B buffer amplifier for LCD applications,” IEEE J. of Solid-State Circuits, vol. 39, no. 11, pp. 1938–1947, 2004.
[20] G. Nicollini, F. Moretti, and M. Conti, “High-frequency fully differential filter using operational amplifiers without common-mode feedback,” IEEE J. of Solid-State Circuits, vol. 24, no. 3, pp. 803–813, 1989.
[21] J. M. Carrillo, R. G. Carvajal, A. Torralba, and J.F. Duque-Carrillo, “Rail-to-rail low-power high-slew-rate CMOS analogue buffer,” Electron. Lett., vol. 40, no. 14, pp. 214–215, 2004.
[22] R. L. Shuler and R. S. Askew, “Low offset rail-to-rail operational amplifier,” United States Application 20060097791, 2006.
[23] Y. H. Tai, Design and operation of TFT-LCD panels, ISBN: 9571142913, Jun. 2006.
[24] S.-J. Kim, Y.-C. Sung, and O.-K. Kwon, “Pre-emphasis driving method for large size and high resolution TFT-LCDs,” SID Int. Sym Tech. Pap., vol. 34, pp. 1354–1357, 2003.
[25] J. H. Lou and J. B. Kuo, “A 1.5-V full-swing bootstrapped CMOS large capacitive-load driver circuit suitable for low-voltage CMOS VLSI,” IEEE J. of Solid-State Circuits, vol. 32, no. 1, pp. 119–121, Jan. 1997.
[26] P. C. Chen and J. B. Kuo, “Sub-1V CMOS large capacitive-load driver circuit using direct bootstrap technique for low-voltage CMOS VLSI,” Electron. Lett., vol. 38, no. 6, pp. 265–266, Mar. 2002.
[27] J. C. Garcia, J. A. Montiel-Nelson, J. Sosa, and H. Navarro, “A direct bootstrapped CMOS large capacitive-load driver circuit,” Proceedings of the Design, Automation and Test in Europe Conference and Exhibition, IEEE, vol. 1, pp. 680–681, Feb. 2004.
[28] J. C. Garcia, J. A. Motiel-Nelson, and S. Nooshabadi, “A single-capacitor bootstrapped power-efficient CMOS driver,” IEEE Circuits and Systems Society, vol. 53, pp. 877–881, Sep. 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔