1、台灣省自來水公司(2006),統計年報。
2、水利署(2006),水利統計。
3、葉怡成(2001),應用類神經網路,儒林書局。
4、葉怡成(2004),類神經網路模式應用與實作應用,儒林書局。
5、張斐章、張麗秋、黃浩倫(2004),類神經網路理論與實務,東華書局,3月初版二刷。
6、張斐章、湖湘帆、黃源義(1998),反傳遞模糊類神經網路於流量推估之應用,中國農業工程學報,44(2):pp26-38。
7、台北市自來水事業處(2006),統計年報。
8、李至倫(2001),水資源建設展望,6月。
9、黃煥彰(1998),「提高台灣電子類股投資績效之研究-類神經網路結合結術指標」,國立中興大學企業管理研究所碩士論文。10、曾衍迪(2006),類神經網路在晶圓廠進行虛擬量測之理論及應用,電機月刊,pp194-202。
11、羅華強(2005),類神經網路-MATLAB的應用,高立圖書有限公司,7月。
12、施勵行、董大鈞、莊弘毅(1996),類神經網路在中長期電力需求及負載預測之應用,能源季刊,10月,pp59-7513、Anderson, David R., Sweeney, Dennis J.and Williams, Thomas (1992), A.,Statistics for Business and Economics,5th ed..
14、Buckley, J.W.,Buckley,Marlence H. and Chiang, Hung-Fu(1976), Research Methodology & Business Decisions, National Association of Accounts and The Society of Industrial Accounts of Canada.
15、Bakirtzis A.G.,Peprldls V., Klartzis S.J.,Alezladls M.C. and Malssls A.H.(1996), ”A Neural Network Short Term Load Forecasting Model for the Greek Power System,”IEEE Trans. On Power Systems,Vol.11,No 2,pp.858-863.
16、Hinrichsen, Don(1998), ”Solutions for a Water-Short World”, Population Reports, Series M, Number 14, September .
17、Grudnistski, Gary and Osburn, Larry(1993), ”Forecasting S&P and Gold Future Prices: An Appplication of Neural Networks,” Journal of Futures Markets,pp631-643.
18、Haykin, Simon(1999),Neural Networks:A Comprehensive Founda- tion ,2nd ed..
19、Hagan M.T. and Demuth H.B.and Beal Mark(1996) ,Neural Network Design,Thomson Learning,Inc.
20、Julie M. and Stephen L.(2002), ”Artificial Neural Networks: A New Approach to Predicting Application Behavior”,Research in Higher Education v43,No2,Aprial.
21、Kohonen, T.(1988), ” The Neural Phonetic Typewriter.” Com- puter , 21(3),11-22.
22、McCulloch W.S. and Pitts W.(1943), ”A logical Calculus of the Ideas Immanent in Nervors Activity.” Bulletin of Mathematical Biophysics. 5: p115-133.
23、Molino, B., Rasulo, G., and Taglialatela, L.(1996), “Forecast Model of Water Consumption for Naples.” Water Resour. Manage.,p 321–332.
24、Rufenatch, H. P. and Guibentif, H.(1997), “A model for Forecasting Water Consumption in Geneva Canton, Switzerland.” J. Water SRT—Aqua, p196–201.
25、Roebber, P.J and Tsonis, A.A.(2005), ”A Method to Improve Prediction of Atmospheric Flow Transitions”,Journal of the Atmosphere Science,v62,p3818-3823.
26、Russel, S.(1995),Artificial Intelligence: A Modern Approach. Prentice- Hall. P.563-597.
27、Tripathy, S.C.(1997),”Demand Forecasting in Power System”, Energy Converse Mgmt Vol. 38. No. 14. pp1475-1481.
28、Yung C. and Niemann H.(1991) “Neural Networks for Appearance -Based 3-D Object Recognition.” Neurocomputing 51,pp 249-264.