(3.236.228.250) 您好!臺灣時間:2021/04/17 14:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:卓峰斌
論文名稱:非接觸式充電系統之研究
論文名稱(外文):Study of Contactless Charging System
指導教授:陳財榮陳財榮引用關係
學位類別:博士
校院名稱:國立彰化師範大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:116
中文關鍵詞:非接觸式充電系統電池機器人
外文關鍵詞:contactless charging systembatteryrobots
相關次數:
  • 被引用被引用:3
  • 點閱點閱:164
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本文主要目的在研究非接觸式充電系統,利用諧振與電磁耦合感應原理
傳送交流電力到充電電路,針對以電池為動力來源之機器人、堆高機、電動
車及通訊與家電等移動性設備進行充電。
非接觸式充電系統可防止因插頭接觸所造成的危險或火花及微粒污染,
對於用電安全與防塵頗有助益,目前很多特殊工作場所如:礦坑、油井、水
中、碼頭及無塵室等之機具皆需使用非接觸式充電系統補充電池所需的電
力。由於非接觸式充電的電磁耦合感應、充電效率、諧振及補償電路等關鍵
技術尚待提升,因此藉由實作一應用於機器人之非接觸式充電系統進行研究。
本研究先針對非接觸式充電系統的電磁耦合感應部分之變壓器結構,以
及相關參數,如:變壓器鐵心材質和繞線形式進行分析與模擬,以選出最適
用之變壓器鐵心及繞線形式;接著模擬變壓器一、二次側鐵心間隙及水平、
垂直偏移距離對變壓器鐵心間電磁耦合感應之影響,以得到較高之電能傳輸
效率;然後針對不同電池特性加以分析,以建立不同電池之最佳充電模式。
為驗證本文所提非接觸式充電系統之可行性與增加整體之充電效率,實
際完成一輸入電壓110 V輸出功率額定43 W非接觸式機器人充電器,採用二
段式充電模式,先以定電流充電至電池電壓達14.5 V,再以定電壓充電模式
繼續進行充電,且在電池充電完成後關閉電源,以提升系統整體之充電效率
及安全性。經由軟體模擬和實作的相互驗證,確認本文所研究的非接觸式電
力充電系統,確實具有較高的方便性及安全性。
The purpose of this dissertation was to study contactless charging systems.
It focused on the power charging system of movable equipments, such as robots,
fort lifts, electrical vehicles, telecommunication, and electrical appliances. The
advantages of a contactless induction charger are securer and more convenience
than traditional chargers since it can prevent the hazards of electric shock or micro
particle pollution caused by sparkles due to high voltage or leaking electricity.
Even though there are some previous researches on contactless power charging
system, the technology of power charging system still needs to be improved.
As far as charge was concerned, different batteries were probed to analyze
and set up the best charging model of them. In order to verify practicability and
to promote efficiency of the contactless charging system mentioned in this paper, a
contactless robot charger was presented with input voltage of 110V and output
power rating of 43W. Batteries were charged with the two-section charge mode,
i.e. being first charged to 14.5V by the definite electric current, then being
continuously charged little by little by the definite voltage. The power was
turned off after batteries were fully charged. The charge efficiency of whole
system was consequently promoted.
中文摘要 i
英文摘要 ii
謝 誌 iii
目 錄 iv
圖 目 錄 vi
表 目 錄 ix
符 號 表 x
第一章 緒論 1
1.1 研究動機 1
1.2 研究背景及目的 4
1.3 文獻探討 5
1.4 研究流程與步驟 8
1.5 論文架構 9
第二章 非接觸式電能傳輸及無線信號傳輸 10
2.1 非接觸式電能傳輸系統 10
2.2 無線信號傳輸 13
2.3 無線信號傳輸及微帶天線 15
第三章 非接觸式電源設計 27
3.1 非接觸式電源架構 28
3.2 全橋式電源轉換器架構與原理 32
3.3 全橋共振式轉換器之設計與模擬 35
第四章 高頻感應式變壓器 43
4.1 感應式變壓器之特性 43
4.2 變壓器之補償 50
4.3 非接觸式變壓器之設計與模擬 57
第五章 充電電池特性與充電器設計 62
5.1 常用二次電池特性與充電方法之分析 62
5.2 鉛酸電池充電器之設計與模擬 71
第六章 非接觸式充電系統實測 76
6.1 非接觸式電能傳輸電路之實測 76
6.2 二段式充電器電路之實測 83
第七章 結論與未來研究方向 89
7.1 總結 89
7.2 未來研究方向 91
參考文獻 92
個人資料 102
個人發表 103
[1] C. S. Wang, G. A. Covic, and O. H. Stielau, “Investigating an LCL Load
Resonant Inverter for Inductive Power Transfer Applications,” IEEE
Transactions on Power Electronics, Vol. 19, No. 4, pp. 995-1002, July 2004.
[2] H. Sakamoto and K. Harada, “A Novel Circuit for Noncontact Charging
through Electro-magnetic Coupling,” IEEE PESC’92, pp. 168-174, 1992.
[3] F. Nakao, et. al., “Ferrite Core Couplers for Inductive Chargers,” Power
Conversion Conference, Vol. 2, pp. 850-854, April 2002.
[4] 何金滿、趙恆生,感應充電器耦合電路設計研究,第二十三屆電力工程
研討會,頁22〜26,2001 年。
[5] C. Cai, D. Du, and Z. Liu, “Advanced Traction Rechargeable Battery System
for Cableless Mobile Robot,” IEEE/ASME, AIM, pp. 234-239, 2003.
[6] H. Ayano, et. al., “Highly Efficient Contactless Electrical Energy
Transmission System,” IEEE IECON’02, pp. 1364-1369, 2002.
[7] H. Abe, H. Sakamoto, and K. Harada, “A Noncontact Charger Using a
Resonant Converter with Parallel Capacitor of the Secondary Coil,” IEEE
Transactions on Industry Applications, Vol. 36, No. 2, pp. 444-451, March
2000.
[8] S. Y. R. Hui and W. C. Wing, “A New Generation of Universal Contactless
Battery Charging Platform for Portable Consumer Electronic Equipment,”
IEEE Transactions on Power Electronics, Vol. 20, No. 3, pp. 620-627, May
2005.
[9] B. Choi and J. Nho, “Contactless Energy Transfer Using Planar Printed Circuit Board Windings,” Electronics Letters, Vol. 37, No. 16, pp. 1007-1009,
August 2001.
[10] X. Liu and S. Y. Hui, “Equivalent Circuit Modeling of a Multilayer Planar
Winding Array Structure for Use in Universal Contactless Battery Charging
Platform,” IEEE Transactions on Power Electronics, Vol. 22, No. 1, pp. 21-29,
January 2007.
[11] C. S. Wang, O. H. Stielau, and G. A. Covic, “Design Considerations for a
Contactless Electric Vehicle Battery Charger,” IEEE Transactions on
Industrial Electronics, Vol. 52, No. 5, pp. 1305-1314, October 2005.
[12] R. J. Wai, et. al., “High-efficiency Fuel-cell Power Inverter with
Soft-switching Resonant Technique,” IEEE Transactions on Energy
Conversion, Vol. 20, pp. 485-492, 2005.
[13] Y. Jang and M. M. Jovanovic, “A Contactless Electrical Energy Transmission
System for Portable-telephone Battery Chargers,” IEEE Transactions on
Industrial Electronics, Vol. 50, pp. 520-527, 2003.
[14] H. Sakamoto and K. Harada, “ A Novel High Power Converter for
Non-contact Charging with Magnetic Coupling,” IEEE Transactions on
Magnetics, Vol. 30, pp. 4755-4757, 1994.
[15] C. G. Kim, et. al., “Design of a Contactless Battery Charger for Cellular
Phone,” IEEE APEC’00, Vol. 2, pp. 769-773, 2000.
[16] C. S. Wang, G. A. Covic, and O. H. Stielau, “General Stability Criterions for
Zero Phase Angle Controlled Loosely Coupled Inductive Power Transfer
System,” IEEE IECON’01, Vol. 2, pp. 1049-1054, 2001.
[17] C. S. Wang, G. A. Covic, and O. H. Stielau, “Load Models and Their
Application in the Design of Loosely Coupled Induvtive Power Transfer System,” IEEE POWERCON’00, Vol. 2, pp. 1053-1058, 2000.
[18] H. Miura, et. al., “A Synchronous Rectification Using a Digital PLL
Technique for Contactless Power Supplies,” IEEE Transactions on Magnetics,
Vol. 41, pp. 3997-3999, 2005.
[19] M. Ryu, et. al., “Analysis of the Contactless Power Transfer System Using
Modelling and Analysis of the Contactless Transformer,” IEEE IECON’05,
pp. 1036-1042, 2005.
[20] Y. S. Kong, et. al., “High-efficiency Series-parallel Resonant Converter for
the Non-contact Power Supply,” IEEE APEC’05, Vol. 3, pp. 1496-1501,
2005.
[21] R. Severns, et. al., “An Ultra-compact Transformer for a 100W to 120kW
Inductive Coupler for Electric Vehicle Battery Charging,” IEEE APEC’96
Conference Proceeding, Vol. 1, pp. 32-38, 1996.
[22] J. Díaz, et. al., “Intelligent and Universal Fast Charger for Ni-Cd and Ni-MH
Batteries in Portable Applications,” IEEE Transactions on Industrial
Electronics, Vol. 51, No. 4, pp. 857-863, August 2004.
[23] J. G. Hayes, et. al., “Wide-load-range Resonant Converter Supplying the SAE
J-1773 Electric Vehicle Inductive Charging Interface,” IEEE Transactions on
Industrial Electronics, Vol. 35, pp. 884-895, July 1999.
[24] F. P. Chuo, T. R. Chen, and J. S. Row, “Dual-frequency Microstrip Antennas,”
Microwave and Optical Technology Letters, Vol. 45, No. 1, pp. 3-5, April 5,
2005.
[25] F. P. Chuo, T. Y. Han, and T. R. Chen, “Compact Slot-coupled Microstrip
Antennas with Circular Polarization,” Microwave and Optical Technology
Letters, Vol. 47, No. 1, pp. 57-59, October 5, 2005.
[26] A. P. Hu and H. L. Li, “A New High Frequency Current Generation Method
for Inductive Power Transfer Applications,” Power Electronics Specialists
Conference, PESC’06, pp. 1-6, June 2006.
[27] J. S. Row and C. Y. Ai, “A Dual-band Rectangular Patch Antenna Stacked
with Parasitic Gridded Patch,” Microwave Optical Technology Letters 38, pp.
44-46, 2003.
[28] H. Kim, et. al., “Dual-feeding Microstrip Antenna with High Isolation,”
Microwave Optical Technology Letters 35, pp. 45-47, 2002.
[29] R. Shavit, Y. Tzur, and D. Spirtus, “Design of a New Dual-frequency and
Dual-polarization Microstrip Element,” IEEE Transactions Antennas
Propagation 51, pp. 1443-1451, 2003.
[30] J. S. Row, “Two-element Dual-frequency Microstrip Antenna with High
Isolation,” Electron Letters 39, pp. 1786-1787, 2003.
[31] L. I. Basilio, et. al., “The Dependence of the Input Impedance on Feed
Position of Probe and Microstrip Line-fed Patch Antennas,” IEEE
Transactions Antennas Propagation 49, pp. 45-47, 2001.
[32] D. M. Pozar, “A Reciprocity Method of Analysis for Printed Slot and
Slot-coupled Microstrip Antennas,” IEEE Transactions Antennas Propagation
34, pp. 1439-1446, 1986.
[33] S. D. Targonski and D. M. Pozar, “Design of Wideband Circularly Polarized
Aperture-coupled Microstrip Antennas,” IEEE Transactions Antennas
Propagation 41, pp. 214-220, 1993.
[34] C. Y. Huang, J. Y. Wu, and K. L. Wong, “Cross-slot-coupled Microstrip
Antenna and Dielectric Resonantor Antenna for Circular Polarization,” IEEE
Transactions Antennas Propagation 47, pp. 605-609, 1999.
[35] P. L. Sullivan and D. H. Schaubert, “Analysis of an Aperture Coupled
Microstrip Antenna,” IEEE Transactions Antennas Propagation 34, pp.
977-984, 1986.
[36] C. S. Wang, G. A. Covic, and O. H. Stielau, “Power Transfer Capability and
Bifurcation Phenomena of Loosely Coupled Inductive Power Transfer
Systems,” IEEE Transactions on Industrial Electronics, Vol. 51, No.1, pp.
148-157, February 2004.
[37] 黃文楠等,可分離式變壓器設計策略於非接觸式供電系統應用之研究 ,
2005 第四屆台灣電力電子研討會,頁489〜494,2005 年。
[38] 梁適安,交換式電源供給器之理論與實務設計,全華科技,台北市,2001
年。
[39] 鄭振東,交換式電源手冊,全華科技,台北市,2001 年。
[40] 溫榮弘,Power MOSFET 應用技術,全華科技,台北市,2004 年。
[41] 鄭振東,電力電子分析與模擬,全華科技,台北市,2005 年。
[42] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics, John
Wiley & Sons Inc, New York, 1989.
[43] 鄭振東,新型柔性交換式電源技術入門,全華科技,台北市,2000 年。
[44] 梁適安,高頻交換式電源供應器原理與設計,全華科技,台北市,1995
年。
[45] H. J. Jiang and G. Maggetto, “Assessment of the Impact of Transformer
Coupling Quality on Steady State Characteristics of Series Resonant
Converters,” IEEE PESC’97 Conference Record, Vol. 2, pp. 1186-1191,
1997.
[46] A. Ghahary and B. H. Cho, “Design of a Transcutaneous Energy
Transmission System Using a Series Resonant Converter,” IEEE PESC ’90
Conference Record, pp. 1-8, 1990.
[47] C. G. Kim and B. H. Cho, “Transcutaneous Energy Transmission with Double
Tuned Duty Cycle Control,” IECEC’96 Conference Proceeding, Vol. 1, pp.
587-591, 1996.
[48] J. Hirai, T. W. Kim, and A. Kawamura, “Study on Crosstalk in Inductive
Transmission of Power and Information,” IEEE Transactions on Industrial
Electronics, Vol. 46, No. 6, pp. 1174-1182, December 1999.
[49] B Choi, et. al., “Design and Implementation of Low-profile Contactless
Battery Charger Using Planar Printed Circuit Board Windings as Energy
Transfer Device, ” IEEE Transactions on Industrial Electronics, Vol. 51, No.1,
pp. 7-10, February 2004.
[50] S. Dieckerhoff, M. J. Ruan, and R. W. Doncker, “Design of an IGBT-based
LCL-resonant Inverter for High-frequency Induction Heating,” Proceeding
IEEE Industry Applications Conference, Vol. 3, pp. 2039-2045, 1999.
[51] J. M. Barnard, J. A. Ferreira, and J. D. Wyk, “Sliding Transformers for
Linear Contactless Power Delivery,” IEEE Transactions on Industrial
Electronics, Vol. 44, No. 6, pp. 774-779, 1997.
[52] D. K. Jackson, S. B. Leeb, and S. R. Shaw, “Adaptive Control of an Inductive
Power Transfer Coupling for Servomechanical Systems,” Conference Record
of MAGLEV ’98, pp. 268-273, 1998.
[53] L. Ran, et. al., “An Inductive Charger with a Larger Air-gap,” PowerElectronics and Drive Systems , Vol. 2, pp. 868-872, 2003.
[54] H. Sakamoto, et. al., “Larger Air-gap Coupler for Inductive Charger,” IEEE
Transactions on Magnetics, Vol. 35, No. 5, pp. 841-847, September 1999.
[55] Barnard, et. al., “Linear Contactless Power Transmission Systems for Harsh
Environments,” IEEE AFRICON’96, Vol. 2, pp. 711-714, 1996.
[56] Klontz, et. al., “Contactless Power Delivery System for Mining
Applications,” IEEE Transactions on Industry Applications, Vol. 31, Issue 1,
pp. 27-35, 1995.
[57] Heeres, et. al., “Contactless Underwater Power Delivery,” Conference
Proceeding of 5th Annual IEEE PESC’94, Vol. 1, pp. 418-423, 1994.
[58] A. G. Pedder, D. B. Andrew, and J. A. Skinner, “A Contactless Electrical
Energy Transmission System,” IEEE Transactions on Industrial Electronics,
Vol. 46, Issue 1, pp. 23-30, 1999.
[59] Y. Kanai, M. Mino, and T. Yachi, “A Non-contact Power-supply Card
Powered by Solar Cells for Mobile Communications,” IEEE Record APEC,
pp. 1157-1162, 2000.
[60] E. Abel and S. M. Thrid, “Contactless Power Transfer an Exercise in
Topology,” IEEE Transactions on Magnetics, Vol. 20, pp. 1813-1815,
September 1984.
[61] A. W. Kelley and W. R. Owens, “Connectless Power Supply for an
Aircraft-passenger Entertainment System,” IEEE Transactions on Power
Electronics, Vol. 4, pp. 348-354, July 1989.
[62] A. W. Green and J. T. Boys, “10kHz Inductively Coupled Power Transfer
Concept and Control,” IEE Power Electronics and Variable Speed Drives
Conference, Vol. 399, pp. 694-699, 1994.
[63] M. Eghtesadi , “Inductive Power Transfer to an Electric Vehicle-analytical
Model,” IEEE conference on Vehicular Technology, Vol. 40, pp. 100-104,
1990.
[64] A. Esser and A. Nagel, “Contactless High Speed Signal Transmission
Integrated in a Compact Rotatable Power Transformer,” European
Conference on Power Electronics and Applications, Vol. 4, pp. 409-414,
1993.
[65] J. M. Bernard, J. A. Ferreira, and J. D. Wyk, “Optimising Sliding
Transformers for Contactless Power Transmission Systems,” Power
Electronics Specialists Conference, pp. 245-251, 1995.
[66] J. T. Boys, G .A. Covic, and A. W. Green, “Stability and Control of
Inductively Coupled Power Transfer Systems,” IEE Proceeding Electronics
Power Application, Vol. 147, No.1, pp. 37-43, January 2000.
[67] O. H. Stielau and G. A. Covic, “Design of Loosely Coupled Inductive Power
Transfer Systems,” IEEE-PES/IEE/CSEE International Conference on Power
System Technology, pp. 85-90, December 2000.
[68] 沈煒智,非接觸型切換式直流電源供應器之研發,國立清華大學碩士論
文,2006 年。
[69] J. G. Hayes, “Battery Charging Systems for Electric Vehicles,” IEE
colloquium, No. 262, pp. 411-418, 1998.
[70] N. K. Kutkut, et. al., “Design Considerations and Topology Selection for a
120kW IGBT Converter for EV Fast Charging,” IEEE Transactions on Power
Electronics, Vol. 13, pp. 169-178, January 1998.
[71] D. O. Sullivan, et. al., “Power-factor-corrected Signal-stage InductiveCharger for Electric Vehicle Batteries,” IEEE PESC’00 Conference, Vol. 1,
pp. 509-516, 2000.
[72] J. G. Hayes and M. G. Egan, “A Comparative Study of Phase-shift Frequency
and Hybrid Control of the Series Resonant Converter Supplying the Electric
Vehicle Inductive Charging Interface,” IEEE APEC’99 Conference, Vol. 1, pp.
450-457, 1999.
[73] J. G. Hayes, et. al., “Full-bridge Series-resonant Converter Supplying the SAE
J-1773 Electric Vehicle Inductive Charging Interface,” IEEE PESC’96
Record, Vol. 2, pp. 1913-1918, 1996.
[74] J. Hirai, T. W. Kim, and A. Kawamura, “Study on Intelligent Battery
Charging Using Inductive Transmission of Power and Information,” IEEE
Transactions on Power Electronics, Vol. 15, Issue 2, pp. 335-345, March
2000.
[75] H. Sakamoto and K. Harada, “A Novel Circuit for Non-contact Charging
Through Electro-magnetic Coupling,” IEEE PESC’92 Conference Record,
Vol. 1, pp. 168-174, 1992.
[76] 李世興,電池活用手冊,全華科技,台北市,1997 年。
[77] 陳德超,鉛酸電池最佳化充電技術之研究,國立彰化師範大學博士論文,
2004 年。
[78] 劉景富,太陽能光電系統電池組充電器之研製,國立彰化師範大學碩士
論文,2004 年。
[79] M. A. S. Masoum, S. M. Badejani, and E. F. Fuchs, “Microprocessor
Controlled New Class of Optimal Battery Chargers for Photovoltaic Applications,” IEEE Transactions on Energy Conversion, Vol. 19, No. 3, pp.
599-606, September 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔