(3.230.76.48) 您好!臺灣時間:2021/04/12 15:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:莊皓安
論文名稱:以脈衝磁控濺鍍法製備鋯鈦酸鉛薄膜之參數探討
指導教授:林義成林義成引用關係
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:110
中文關鍵詞:脈衝磁控濺鍍法PZT薄膜脈衝頻率能率循環沈積率結晶性
外文關鍵詞:Pulse magnetron sputterPZT thin filmPulse frequencyDuty cycleDeposition rateCrystalline
相關次數:
  • 被引用被引用:5
  • 點閱點閱:120
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗採用脈衝磁控濺鍍(Pulse magnetron sputter, PMS),以金屬單一靶材通以氧氣反應將鋯鈦酸鉛(PZT)薄沈積於矽基鉑金屬底電極上,並藉由快速退火使薄膜結晶產生鈣鈦礦相(Perovskite Phase)。藉由調變PMS製程的的脈衝頻率、能率循環、氧氣流量,及退火的時間與溫度,分析其對薄膜的結晶相、沈積率、以及微結構的影響。薄膜性質主要以X-ray繞射儀進行薄膜結晶相分析,以SEM量測沈積率及觀察薄膜結晶型態及薄膜表面形貌。實驗結果得知:以PMS製程製備PZT薄膜,在100℃的沈積溫度下並無結晶相產生,需再以後退火製程於溫度650℃以上始得到鈣鈦礦相,在750℃獲得最佳之結晶性。調變不同退火時間於40秒至160秒,隨退火時間增加,薄膜之焦綠石相繞射強度亦逐漸增加。脈衝參數方面,在氧/氬比為1:1,沈積溫度100℃的環境下,脈衝頻率從10kHz至100kHz,隨脈衝頻率的降低,薄膜沈積率逐漸增加,且經退火後薄膜鈣鈦礦相的X-Ray繞射強度增加並減少焦綠石相(Pyroclore phase)產生。而隨著能率循環至95%下降至80%,會使薄膜沈積率及鈣鈦礦相的X-ray繞射強度增加。當薄膜厚度到達400nm以上時,脈衝頻率33kHz以下、氧/氬比為1:1、能率循環90%,或氧/氬比為1/10、脈衝頻率50kHz、能率循環90%,皆可獲得單一鈣鈦礦相之PZT薄膜。隨膜厚增加可助於鈣鈦礦相生成,且具有較高之沈積速率,以60W濺鍍功率其最高沈積速率可達9.4nm/min。當薄膜厚度達550nm以上,薄膜內應力較大就會產生明顯浮凸及剝離現象,而在Ti/Pt(50nm/150nm)的底電極經快速退火後會產生凸丘(Hillock)現象,使電容結構之PZT薄膜產生短路。
In this study we report on the influences of processes parameter for depositing PZT (Lead zirconate titanate) thin film on the silicon based Ti/Pt bottom electrode prepared by PMS(Pulse Magnetron Sputter) using single metallic target with a post deposition rapid thermal annealing. The process parameters of pulse frequency, duty cycle, O2/Ar flow rate ratio, and post annealing time and temperatures has been discussed. The crystalline of film is analyzed by X-ray diffractiometer and the morphology, surface structures and deposition rates of films is analyzed with SEM.
The experiments exhibited that the perovskite structure of PZT thin film can be obtained with post annealing treatment at 650℃ for 40s by PMS process at 100℃. The X-ray diffraction intensity of perovskite structure decreases with annealing time but increases with annealing temperature until 750℃. About PMS parameters, the lower pulse frequency, say 10kHz, enhance the deposition rate and X-ray diffraction intensity of perovskite PZT structure. Also, adjusting duty cycle to 80~85% and lower O2/Ar flow rate ratio have enhancement on the deposition and X-ray intensity. The enhancement of perovskite PZT structure by increasing the film thickness is confirmed by SEM and XRD. The perovskite single phase of PZT thin film can be obtained with pulse frequency under 33kHz, or film thickness over 400nm, or O2/Ar flow ratio under 1/10. The deposition rate reach 9.4nm/min at 60W input power. However, the film cracks and lift-off caused by stress appearing as film thickness larger than 550nm, and hillock phenomenon of Ti/Pt(50nm/150nm) bottom electrode both cause the capacitor devices PZT thin film electrically short.
摘要 Ⅰ
謝誌 Ⅲ
目次 Ⅳ
表次 Ⅶ
圖次 Ⅷ

第一章 緒 論 ...................................... 1
1-1 研究背景與動機.................................. 1
1-2 研究目的....................................... 5
1-3 名詞解釋....................................... 6

第二章 理論分析與文獻回顧 .............................. 8
2-1 壓電陶瓷材料與特性.............................. 8
2-1-1鋯鈦酸鉛材料結構.................................. 8
2-1-2鋯鈦酸鉛二元系壓電陶瓷............................. 10
2-1-3壓電陶瓷的基本性質與重要參數........................ 12
2-1-3-1壓電陶瓷之鐵電性質............................ 12
2-1-3-2壓電陶瓷之焦電性質............................ 14
2-1-3-3壓電陶瓷之壓電性質............................ 14
2-1-3-4壓電陶瓷之介電性質............................ 17
2-1-3-4壓電陶瓷之重要參數............................ 17
2-1-4 薄膜壓電材料.................................... 18
2-2 壓電薄膜的製備方法............................. 18
2-2-1 Sol-gel溶凝膠法............................. 19
2-2-2金屬有機化學氣相沈積法......................... 20
2-2-3脈衝雷射沈積法................................ 20
2-2-4濺鍍法....................................... 20
2-2-5電弧放電反應性離子噴鍍法....................... 21
2-3 PZT薄膜不同底電極之探討............................ 21
2-3-1以金屬為底電極之探討............................ 22
2-3-2以金屬氧化物為底電極之探討....................... 23
2-4 PZT薄膜之退火製程................................. 24
2-5 濺鍍原理..................................... 26
2-5-1 射頻濺鍍法.................................... 29
2-5-2 脈衝濺鍍法................................... 30
2-5-3 反應性濺鍍法................................... 30
2-5-3-1使用陶瓷靶材進行反應性濺鍍之探討.............. 30
2-5-3-2使用金屬靶材進行反應性濺鍍之探討.............. 31
2-5-4 脈衝直流濺鍍法................................. 34
2-6 脈衝參數對電漿及薄膜性質之影響................... 42

第三章 研究方法....................................... 47
3-1 實驗流程...................................... 47
3-2 濺鍍系統設備................................... 49
3-3 退火系統設備................................... 50
3-4 實驗材料與試片準備.............................. 52
3-5 實驗步驟...................................... 53
3-5-1基板準備與前處理.................................. 53
3-5-2鍍膜參數與步驟.................................... 53
3-5-2退火參數與步驟.................................... 56
3-5 薄膜特性分析................................... 57
3-5-1薄膜沈積率量測及表面形態分析........................ 57
3-5-2 X-ray繞射分析.................................... 58

第四章 結果與討論...................................... 60
4-1 濺鍍參數實驗................................... 60
4-1-1 濺鍍參數與靶材表面劣化............................ 60
4-1-2 濺鍍參數水準................................... 62
4-2 製程參數對薄膜沈積率之影響....................... 73
4-2-1脈衝頻率對薄膜沈積率之影響........................ 73
4-2-2能率循環對薄膜沈積率之影響........................ 75
4-2-3氧氬氣流量比對沈積率影響.......................... 77
4-3 製程參數對薄膜結晶性質之影響...................... 80
4-3-1脈衝頻率對薄膜結晶性質影響......................... 80
4-3-2能率循環對薄膜結晶性質之影響......................... 84
4-3-3氧氣流另對薄膜結晶性質之影響......................... 87
4-4 薄膜表面形貌觀察................................ 89
4-4-1 脈衝頻率對薄膜表面形貌之影響...................... 89
4-4-2 能率循環對薄膜表面形貌之影響...................... 95
4-4-3 其他因素對薄膜表面形貌之影響...................... 98

第五章 結論與未來研究.................................. 101
5-1 結論.......................................... 101
5-2 未來研究...................................... 103
參考文獻.............................................. 104

表次
表1 薄膜材料於電子領域之應用........................ 2
表2 壓電薄膜特性比較表............................. 19
表3 不同脈衝參數之離子能量比例表.................... 44
表4 L18直交表.................................... 55
表5 前測試實驗參數水準設定表........................ 55
表6 濺鍍參數設定表................................. 56
表7 退火實驗參數設定............................... 57
表8 沈積溫度及功率對靶材穩定性之影響................. 61
表9 功率60W製程溫度100℃,脈衝頻率與能率循環對靶面穩定性之影 響關係圖...................................... 62
表10 實驗量測結果及S/N值............................ 64
表11 濺鍍共同參數設定表............................. 65
表12 沈積率參數回應表............................... 66
表13 靶面穩定性參數回應表............................ 67

圖 次
圖1 致動器材料特性比較圖............................ 3
圖2 鈣鈦礦晶格示意圖............................... 10
圖3 鐵電陶瓷微觀示意圖.............................. 10
圖4 PbZrO3-PbTiO3二元相圖.......................... 11
圖5 介電體、壓電體、熱電體、與鐵電體之間的關係示意圖.... 12
圖6 典型鐵電陶瓷的電滯迴線圖......................... 13
圖7 壓電陶瓷的壓電效應示意圖......................... 17
圖8 ADRIP沈積PZT系統示意圖........................... 21
圖9 Pt/Ti底電極經退火後產生hillock之TEM斷面照片及表面SEM照片23
圖10 經快速退火後之PZT薄膜表面SEM照片................ 25
圖11 BEC退火裝置圖................................. 25
圖12 以BEC退火PZT薄膜之表面形貌SEM照片............... 26
圖13 電漿在腔體的各種反應示意圖...................... 28
圖14 反應性氣體流量與薄膜沈積率及電壓關係示意圖......... 32
圖15 氧氣流量比和沈積速率關係圖(無靶材遮罩)........... 33
圖16 氧氣流量比和沈積速率關係圖(有靶材遮罩)........... 33
圖17 以靶材遮罩進行高沈積速率反應性濺鍍示意圖........... 34
圖18 脈衝電源供應器避免異常放電之原理示意圖............. 35
圖19 脈衝循環及調控參數示意圖......................... 36
圖20 優選濺射示意圖.................................. 37
圖21 脈衝頻率與能率循環與電弧放電之關係圖............... 38
圖22 以脈衝直流反應性濺鍍PZT薄膜經快速退火之X-Ray繞射圖.. 40
圖23 以脈衝直流反應性濺鍍PZT薄膜表面形貌................ 41
圖24 (a)脈衝頻率100kHz反轉時間4.5μs之輸出電壓波形 (b)不同脈衝參數下隨時間電漿電子溫度變化圖 (c)不同脈衝參數之離子能譜圖..................................................... 45
圖25 以不同脈衝頻率沈積鈦金屬薄膜之SEM圖................ 44
圖26 以不同濺鍍方式調變氧氣流量與沈積速率關係圖.......... 45
圖27 (a)調變頻率與反轉時間對沈積率之影響 (b)不同頻率下電漿消耗功率與沈積率關係圖 (c)反轉時間與沈積率關係圖................ 46
圖28 實驗流程圖...................................... 48
圖29 薄膜濺鍍系統示意圖............................... 50
圖30 快速升溫系統示意圖............................... 51
圖31 快速升溫系統.................................... 52
圖32 底電極基板結構圖................................. 53
圖33 掃瞄式電子顯微鏡................................. 58
圖34 X-ray繞射儀..................................... 59
圖35 濺鍍後靶面產生金屬熔融滲出形成鉛顆粒之現象.......... 60
圖36 沈積率參數輸出回應圖............................. 68
圖37 靶面穩定性參數輸出回應圖.......................... 69
圖38 在退火溫度600℃,不同退火時間之薄膜X-Ray繞射圖...... 71
圖39 退火時間100秒下,不同退火溫度之薄膜X-Ray繞射圖...... 72
圖40 在能率循環90%下,不同脈衝頻率與薄膜沈積率關係圖...... 74
圖41 在脈衝頻率50kHz下,不同能率循環與沈積率關係圖....... 76
圖42 脈衝頻率50kHz,能率循環90%下,不同氧氣流量對電源輸出電壓之關係圖................................................. 78
圖43 脈衝頻率50kHz,能率循環90%下,不同氧氣流量對沈積率影響之關係圖................................................... 79
圖44 以能率循環90%,氧/氬比1:1,不同脈衝頻率之PZT薄膜X-Ray繞射圖..................................................... 81
圖45 薄膜厚度與不同PZT鈣鈦礦相晶面之X-Ray繞射強度關係圖.. 82
圖46 能率循環90%,氧/氬比1:1,薄膜厚度為400±30nm下不同脈衝頻率之X-ray繞射圖........................................... 83
圖47 以脈衝頻率50kHz,氧/氬比1:1,不同能率循環的PZT薄膜繞射圖..................................................... 85
圖48 以脈衝頻率50kHz,氧/氬比1:1,固定膜厚對不同能率循環之XRD繞射圖.................................................. 86
圖49 以脈衝頻率50kHz,能率循環90%,不同氧/氬比沈積PZT薄膜經退火後之XRD繞射圖......................................... 88
圖50 (a)50kHz, thickness:209nm, 1h (b)33kHz, thickness:314nm, 1h (c)25kHz, thickness:345nm, 1h (d)10kHz, thickness:563nm, 1h,不同脈衝頻率沈積之薄膜表面SEM照片(10000X).............................................. 90
圖51 (a) 50kHz, thickness: 415nm(b) 33kHz, thickness: 383nm (c) 25kHz, thickness: 429nm (d)10kHz,thickness: 420nm之薄膜表面SEM照片(10000X)............................. 91
圖52 以脈衝頻率10kHz,能率循環90%,氧/氬比1:1沈積之薄膜表面晶界(20000X)........................................... 92
圖53 以脈衝頻率50kHz,能率循環90%,氧/氬比1:1沈積之薄膜表面結晶SEM照片(50000X)..................................... 93
圖54 快速退火薄膜產生之彎月型破裂現象(10000X, Tilt:50°).94
圖55 (a) Pulse duty cycle:95%, 1μs, thickness: 101nm (b) Pulse duty cycle:90%, 2μs, thickness: 195nm (c) Pulse duty cycle:85%, 3μs, thickness: 254nm (d) Pulse duty cycle:80%, 4μs, thickness: 336nm (e) Pulse duty cycle:75%, 5μs, thickness: 297nm (f) Pulse duty cycle:70%, 6μs, thickness:406nm不同能率循環之薄膜表面SEM照片(10000X).... 96
圖56 (a) Pulse duty cycle: 90%, Thickness:415nm (b) Pulse duty cycle: 85%, Thickness:425nm (c) Pulse duty cycle: 80%, Thickness:396nm控制膜厚以不同能率循環沈積之薄膜表面SEM照片(10000X).................................. 97
圖57 薄膜浮凸剝離現象SEM圖(500X)................. 98
圖58 膜厚1.5μm薄膜浮凸及破裂現象之光學顯微鏡照片(1000X) 99
圖59 膜厚550nm薄膜微晶界之光學顯微鏡照片(1000X)...... 99
圖60 Pt/Ti底電極經退火製程後之凸丘(Hillock)現象(10000X) 100
[1]Y. B. Jeon, R. Sood, J. h. Jeong, S. G. Kim, “MEMS power generator with transverse mode thin film PZT”, Sensors and Actuators A 122, 2005, pp.16-22.
[2]C. H. Cheng, S. C. Chen, Z. X. Zhang, Y. C. Lin, “Analysis and experiment for the deflection of a shear-mode PZT acuator”, Smart Material and Structure, 16, 2007, pp. 230-236.
[3]C. L. Wu, J. C. Yang, Y. C. Chen, “Low power consumption PZT actuated micro-pump”, Microsystems, Packaging, Assembly Conference Taiwan, 2006 International, 2006, pp.1-4.
[4]Z. G. Hu, Z. M. Huang, Z. Q. Lai, G. S. Wang, J. H. Chu, “Optical properties of amorphous PbZrxTi1-xO3 (x=0.52) thin filmsprepared by RF magnetron sputtering”, Thin Solid Films, 437,2003, pp.223-229.
[5]P. Muralt, “PZT thin film for microsensors and actuators: where do we stand?”, IEEE Transactions on Ultrasonic, Ferroelectrics, and Frequancy Control, 47(4), 2000, pp.903.
[6]P. Muralt, “Micromachined infrared detectors base on pyroelectric thin films”, Report on Progress in Physics, 64, 2001, pp.1339-1388.
[7]N. J. Conway, Z. J. Traina, S. G. Kim, “A strain amplifying piezoelectric MEMS actuator”, Journal of Micromechanics and Microengineering, 17, 2007, pp.781-787.
[8]T. Haccart, E. Cattan, D. Remiens, “Dielectric, ferroelectric and piezoelectric properties on sputterd PZT thin films on Si substrates: influence of film thickness and orientation”, Semiconductor Physics, Quantum Electronics and Optoelectronics, 2002, 5(1), pp.78-88.
[9]V. S. Smentkowski, “Trend in sputtering”, Progress in Surface Science, 64, 2000, pp. 1-58.
[10]S. Y. Chen, “Texture evoluion and electrical properties of oriented PZT thin films” Materials Chemistry and Physics, 45, 1996, pp.159-162.
[11]楊明輝,“脈衝磁控濺鍍技術介紹”,工業材料,232,2006,pp.91-98。
[12]B. Jaffe, S. Marzullo, and R. S. Roth, “Properties of Piezoelectric Ceramics in the Solid Solution Series Lead Titanate-Lead Zirconate-Lead Oxide: Tin Oxide and Lead Titanate-Lead Haf-nate”, Journal of Research of the National Bureau of Standards, 55 (4), 239-254 (1955).
[13]S. A. Mabus, “The Morphotropic Phase Boundary in PZT Solid solution”, Journal of Applied Crystals, 13, 1980, pp.211-216.
[14]曲遠方, “功能陶瓷材料”,曉園出版社,2006,pp. 147-157.
[15]F. F. C. Duval, S. A. Wilson, G. Ensell, N. M. P. Evanno, M. G. Cain, R. W. Whatmore, “Characterisation of PZT thin film micro-actuators using a silicon micro force sensor”, Sensor and Actuator A, 133, 2007, pp. 35-44.
[16]E. M. Alkoy, K. Uchiyama, T. Shiosaki, S. Alkoy, “Improveng fatigue resistance of Pb(Zr,Ti)O3 thin film by using PbZrO3 buffer layer”, Journal of Applied Physics, 99, 106106, 2006.
[17]P. Delobelle, G.S. Wang, E Fribourg-Blanc, D. Remiens, “Mechanical properties measured by nano-indentation of Pb(Zr,Ti)O3 sol–gel films deposited on Pt and LaNi03 electrodes”, Surface Coatings and Technology, 201, 2006, pp. 3155-3162.
[18]S. Okamura, N. Abe, Y. Otani, T. Shiosaki, “Influence of Pt/TiO2 bottom electrodes on the properties of ferroelectric Pb(Zr,Ti)O3 thin films”, Integrated Ferroelectrics, 52, 2003, pp. 127-136.
[19]S. K. Pandey, A. R. James, C. Prakash, T. C. Goel, K. Zimik, “Dielectric and ferroelectric properties of pulsed laser deposited lead zirconate titanate (65/35) thin film”, Thin solid film, 2006, In press.
[20]Y. H. Chu, S. J. Lin, K. S. Liu, I. N. Lin, “Low temperature process for synthesis of (100) textured Pb(Zr0.48Ti0.52)O3 thin films on Si substrate by laser lift-off transferring technique”, Integrated Ferroelectrics, 57, 2003, pp.1233-1240.
[21]D. X. Lu, E. M. W. Wong, E. Y. B. Pun, P. S. Chung, J. S. Liu, Z. Y. Lee, “Preparation and ferroelectric properties of lead zirconate titanate thin films by RF magnetron sputtering”, International Journal of Electronics, 83(6), 1997, pp. 805-815.
[22]Z. Hubicˇka, M. Cˇada, P. Ada′mek, P. Virostko, J. Olejn?′cˇek, A. Deyneka, L. Jastrab?′k, K. Jurek, G. Suchaneck, M. Guenther, G. Gerlach, P. Boha′cˇ, “Investigation of the RF pulse modulated plasma jet system during the deposition of Pb(ZrxTi1-x)O3 thin films on polymer substrates”, Surface Coatings and Technology, 200, 2005, pp. 940-946.
[23]X. S. Li, K. Yamashita, T. Tanaka, Y. Suzuki, M. Okuyama, “Structural and electrical properties of highly oriented Pb(Zr,Ti)O3 thin films deposited by facing target sputtering”, Sensor and Actuator A, 82, 2000, pp. 265-269.
[24]R. Thapliyal, P. Schwaller, M. Amberg, F. J. Haug, G. Fortunato, D. Hegemann, H.J. Hug, A. Fischer, “PZT thin film deposition on Si wafers and optical fibers prepared by reactive DC pulsed magnetron sputtering from a single metallic target”, Surface Coatings and Technology, 200, 2005, pp. 1051-1056.
[25]P. Schwaller, A. Fischer, R. Thapliyal, M. Aeberhard, J. Michler, H. J. Hug, ”Single-target DC-pulsed deposition of lead zirconate titanate thin films: Investigation of the chemical and mechanical properties by glow-discharge optical emission spectroscopy and nanoindentation”, Surface Coatings and Technology, 200, 2005, pp. 1066-1071.
[26]Y. Yasuda, M. Akamatsu, M. Tani, M. Yoshida, K. Kondo, T. Iijima, “Preparation of lead zirconate titanate thick films by arc-discharged reactive ion-plating method”, Japanese Journal of Applied Physics, 40, 2001, pp. 5518-5522.
[27]M. Akamatsu, M. Tani, Y. Yasuda, “Fast deposition of lead zirconate titanate thick films by arc discharged reactive ion-plating method”, Japanese Journal of Applied Physics, 41, 2002, pp. 6976-6979.
[28]J.D. Kim, K. Sasaki, T. Hata, “Preparation and properties of Pb(Zr,Ti)O3 thin films deposited on Ir electrodes using a sputtering apparatus”, Vaccum, 59, 2000, pp. 559-566.
[29]Y. Nishioka, K. Shiozawa, T. Oishi, K. Kanamoto, Y. Tokuda, H. Sumitani, S. Aya, H. Yabe, K. Itoga, “Giga-bit scale DRAM cell with new simple Ru/(Ba,Sr)TiO3/Ru stacked capacitors using X-ray lithography”, Proceeding of the International Electron Device Meeting, Washington, 1995, pp. 903-906.
[30]H. J. Nam, D.K. Choi, W.J. Lee, “Formation of hillocks in Pt/Ti electrodes and their effects on short phenomena of PZT films deposited by reactive sputtering”, Thin Solid Film, 371, 2000, pp.264-271.
[31]G. A. C. M. Spierings, G. J. M. Dormans, W. G. J. Moors, M. J. E. Ulenaers, and P. K. Larsen, “Stresses in Pt/Pb(Zr,Ti)O3/Pt thin-film stacks for integrated ferroelectric capacitors”, Journal of Applied Physics, 78, 1995, pp. 1926-1933.
[32]G. Velu, D. Remiens, P. Tronc, E. Cattan, and B. Thierry, “Influence of annealing treatment on the ferroelectric and piezoelectric properties of PZT thin films grown on silicon substrates by sputtering”, Proceedings of the Tenth IEEE International Symposium on Applications of Ferroelectrics, 1, 1996, pp.503-506.
[33]C. Millon, C. Malhaire, C. Dubois, D. Barbier, “Control of the Ti diffusion in Pt/Ti bottom electrodes for the fabrication of PZT thin film transducers”, Material Science in Semiconductor Processing, 5, 2003, pp. 243-247.
[34]梁春昇,“氧化物電極上PZT薄膜之製備及特性研究”, 國立清華大學碩士論文,2001。
[35]李振岳,“以Pt(O)製作下電極對PZT鐵電薄膜特性之影響研究”,國立清華大學碩士論文,2001。
[36]Y. F Lan, T. Y. Guo, J.C. Chang, W. L. Chang and J. L. He, “Thermionic electron emission enhancement of PZT thin films sputter deposition”, Surface and Coatings Technology, 200, 2005, pp. 1629-1634.
[37]C.V.R. Vasant Kumar, R. Pascual, and M. Sayer, “Crystallization of sputtered lead zirconate titanate films by rapid thermal processing”, Journal of Applied Physics, 71, 1992, pp. 864-874.
[38]C.V.R. Vasant Kumar, M. Sayer, R. Pascual, D.T. Amm, Z. Wu, “Lead zirconate titanate films by rapid thermal processing”, Appiled Physics Letter, 58, 1991, pp. 1161-1163.
[39]A. I. Mardare, C. C. Mardare, E. Joanni, “Bottom electrode crystallization of PZT thin films for ferroelectric capacitors”, Journal of the European Ceramic Society, 25, 2005, pp. 735-741.
[40]A. I. Mardare, C. C. Marfare, J. R. A. Fernandes, J. Agostinho Moreira, and M.B. Marques, “Bottom electrode crystallization of Pb(Zr,Ti)O3 thin films made by RF magnetron sputtering”, Journal of Physics: Condensed Matter, 17, 2005, pp. 7263-7273.
[41]葉通迪,“純直流及非對稱雙極脈衝直流離子氮化鈦之研究”,私立逢甲大學碩土論文,2001。
[42]T. Hata, S. Nakano, Y. Masuda, K. Sasaki, Y. Haneda and K. Wasa, “Heteroepitaxial growth of YSZ films on Si(100) substrate by using new metallic mode of reactive sputtering”, Vacuum, 51, No.4, 1998, pp.583-590.
[43]I. Safi, “Recent aspect concerning DC reactive magnetron sputtering of thin films: a review”, Surface Coatings and Technology, 127, 2000, pp. 203-219.
[44]H. S. Kim, C. Park, R. K. Ko, D. Shi, J. K. Chung, H. S. Ha, Y. M. Park, K. J. Song, D. J. Youm, “High rate DC-reactive sputter deposition of Y2O3 film on the textured metal substrate for the superconducting coated conductor”, Physica C, 426-431, 2005, pp. 926-932
[45]T. Hata, S. Kawagoe, W. Zhang, K. Sasakia and Y. Yoshiok, “Proposal of new mixture target for PZT thin films by reactive sputtering”, Vacuum, 51, No.4, 1998, pp. 665-671.
[46]K. Sasaki, W. X. Zhang and T. Hata, “Origin of oxygen in Pb(Zr,Ti)O3 films prepared by metal-oxide combined target”, Vacuum, 51(4), 1998, pp. 661-664.
[47]R. P. Howson, N. Danson, I. Safi, “High rate reactive sputtering using gas pulsing: a technique for the creation of film on to large, flat substrate” Thin Solid film, 351, 1999, pp. 32-36.
[48]J. C. Sellers, ENI, “Asymmetric bipolar pulse DC an enabling technology for reactive PVD”, ENI.100 High-power Rochester, 1996, NY14623.
[49]J. T. Verdeyen, J. Beberman and L. Overzet, “Modulated discharges: Effect on plasma parameters and deposition”, Journal of Vacuum Science Technology, A8, 1990, pp.1851-1856.
[50]L. B. Jonsson, T. Nyberg, I. Katardjiev, S. Berg, “Frequency response in pulsed DC reactive sputtering processes”, Thin Solid Films, 365, 2000, pp.43-48.
[51]A. Belkind, Z. Zhao, D. Carter, L. Mahoney, G. McDonough, G. Roche, R. Scholl and H. Walde, “Pulsed-DC Reactive Sputtering of Dielectrics: Pulsing Parameter Effects”, 43rd Annual Technical Conference Proceedings - Denver (Society of Vacuum Coaters), 2000, pp. 86-90.
[52]D. Carter, H. Walde, G. McDonough and G. Roche, “Parameter Optimization in Pulsed DC Reactive Sputter Deposition of Aluminum Oxide”, 45th Annual Technical Conference Proceedings (Society of Vacuum Coater), 2002, pp. 570-577.
[53]S. H. Seo, J. H. In, H. Y. Chang and J. G. Han, “Effect of duty cycle on plasma parameters in the pulsed dc magnetron argon discharge”, Applied Physics Letters 86, 262103, 2005.
[54]A. Belkind, A. Freilich and R. Scholl, “Pulse duration effects in pulse-power reactive sputtering of Al2O3”, Surface and Coatings Technology 108-109, 1998, pp.558-563.
[55]H. Bartzsch, D. Glöß, B. Böcher, P. Frach and K. Goedicke, “ Properties of SiO2 and Al2O3 films for electrical insulation applications deposited by reactive pulse magnetron sputtering”, Surface Coatings and Technology, 174-175, 2003, pp. 774-778.
[56]H. Bartzsch, P. Frach, K. Goedicke, “Anode effects on energetic particle bombardment of the substrate in pulsed magnetron sputtering”, Surface Coatings and Technology, 132, 2000, pp. 244-250.
[57]R. D. Arnell, P. J. Kelly, J. W. Bradley, “Recent development in pulsed magnetron sputtering”, Surface Coatings and Technology, 188-189, 2004, pp. 158-163.
[58]R. Cremer, M. Witthaut, D. Neuschutz, G. Erkens, T. Leyendecker, M. Feldhege, “Comparative characterization of alumina coatings deposited by RF,DC and pulsed reactive magnetron sputtering”, Surface and Coatings Technology, 120–121, 1999, pp. 213–218.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔