(3.230.143.40) 您好!臺灣時間:2021/04/19 05:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝岷宜
研究生(外文):Min Yi Hsieh
論文名稱:應用於可撓性塑膠基板之軟模仁紫外光微影術
論文名稱(外文):Ultraviolet Soft-Mold Lithography for Flexible Plastic Substrates
指導教授:賴永齡賴永齡引用關係
指導教授(外文):Yeong Lin Lai
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:110
中文關鍵詞:紫外光軟模仁轉印微影術熱壓式軟模仁轉印微影術軟模仁紫外光固化樹脂熱塑性高分子塑膠基板
外文關鍵詞:soft ultraviolet nanoimprint lithographysoft-mold nanoimprint lithographysoft moldphoto-curing resinthermoplastic resistsplastic substrate
相關次數:
  • 被引用被引用:2
  • 點閱點閱:166
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用紫外光軟模仁轉印微影術(Soft UV-NIL),用異丙醇稀釋紫外光固化樹脂(photo-curing resin, U-451D)取代國外昂貴UV光阻LR8765(BASF AG),在室溫低壓(<1.5bar)下,利用聚二甲基矽氧烷(PDMS)的可撓性及高透光性優點,轉印在乾淨塑膠基板(PES)。之後不需經過繁瑣的製程步驟,就可以得到精確奈米級圖形。另一方面,本論文利用塑膠基板(PES)耐高溫特性,選擇高溫低壓的環境下,利用軟模仁熱壓式轉印微影術,轉印在塗有熱塑性高分子NXR1010的塑膠基板上。
本實驗紫外光軟模仁微影術具有製程時間短暫,及製程條件容易,在室溫下進行,基板不會因製程熱循環而產生變形,具備在室溫低壓下製程穩定與高產率優勢:而熱壓式軟模仁轉印微影術實驗製程雖有升溫降溫製程時間消耗,但製程中卻可大量降低氣泡產生,避免影響圖形轉印解析度,大大提升轉印成功率。本實驗在可撓性塑膠基板上完成線寬400nm線條結構以及1μm柱狀結構,並可將這些轉印結構應用在微流道、可撓性顯示器、生醫檢測技術。
The thesis studies soft ultraviolet nanoimprint lithography (soft UV-NIL). Isopropanol (IPA) is used to dilute photo-curing resin (U-451D) in order to replace a more expensive UV-curable materials, such as LR8765(BASF AG). At room temperature and low-pressure (<1.5bar), the polydimethylsiloxane (PDMS) with the flexible and transparent advantages is imprinted on the plastic substrate, polyethersulfone (PES). The nano patterns with high fidelity are obtained without complex processes. On the other hand, the soft-mold nanoimprint technique is used to imprint the thermoplastic resist NXR1010 on the plastic substrate PES under high temperature and low pressure conditions.
The soft UV-NIL developed has the advantages of short process time, simple operation, room-temperature fabrication. At room temperatures, the soft UV-NIL does not deform the substrate and exhibits stable process and high throughput. On the other hand, although the soft-mold nanoimprint technique has the disadvantages of time-consuming heating and cooling, the air bubbles are effectively reduced and the resolution and yields are improved. 400nm line structures and 1um pillar structures on plastic substrates are achieved. These structures can be applied to the microfluidics, flexible displays, and biomedical sensors.
中文摘要 I
英文摘要 II
誌謝 III
目次 IV
表目錄 VII
圖目錄 VIII
第一章 序論 1
1-1 前言 1
1-2 研究背景 2
1-3 歷史文獻 8
1-4 研究動機 26
1-5 論文架構 27
第二章 紫外光奈米轉印微影技術理論 28
2.1 前言 28
2.2 各種透光轉印模仁的特性 29
2.3 高分子理論於奈米轉印技術之應用 34
2.3.1 紫外線固化樹脂的材料性質 35
2.3.2 NXR1010的材料性質 35
2.4 高分子材料的機械性質 35
2.5 高分子材料的黏度 38
2.6 本研究使用的實驗設備 41
第三章 紫外軟模仁轉印微影術的實驗過程與前置處理 46
3.1 翻製軟模仁PDMS與前置處理 46
3.2 PDMS軟模仁翻製 48
3.3 塑膠基板的前置步驟 52
3.4 紫外光固化轉印實驗機台 55
3.5 軟模仁紫外光轉印微影實驗步驟 58
3.6 本實驗軟模仁轉印製程步驟 62
第四章 轉印實驗結果與討論 66
4.1 軟模仁紫外光轉印實驗步驟 66
4.2 軟模仁紫外光轉印線條部份 68
4.2.1 軟模仁紫外光轉印壓力1.5bar線條部份 69
4.2.2 觀測儀器原理及功能介紹 72
4.2.3 軟模仁紫外光轉印壓力3bar線條部份 73
4.2.4 軟模仁紫外光轉印大尺寸線條結構 75
4.2.5 軟模仁紫外光轉印柱狀結構 76
4.3 軟模仁熱壓式轉印之實驗方法 78
4.3.1 軟模仁熱壓式轉印之線條結構 80
4.3.2 軟模仁熱壓式轉印之大尺寸線條結構 81
4.3.3 轉印模仁與轉印柱狀結構比照 82
4.3.4 軟模仁熱壓式轉印之柱狀結構 83
4.4 軟模仁紫外光轉印與軟模仁熱壓式轉印之線條結構 84
4.4.1 軟模仁紫外光轉印與軟模仁熱壓式轉印之柱狀結構 85
4.4.2 軟模仁紫外光轉印與軟模仁熱壓式轉印之製程參數 86
4.5. 失敗條件下的轉印圖形分析 88
4.5.1 轉印圖形填充模仁不完整現象 88
4.5.2 壓力對轉印圖形不均現象 89
4.5.3 氣泡產生對轉印圖形的影響 89
4.5.4 載台邊緣壓力對轉印圖形不均現象 91
4.6 紫外光吸收度與穿透度的探討 93
第五章 轉印結構應用與討論 97
5.1 轉印線條結構於微流道技術之應用 97
5.2 轉印柱狀結構於生醫檢測技術之應用 98
5.2.1 奈米圓柱於癌細胞檢測技術 100
5.3 轉印線條結構應用可繞性顯示器 100
5.4 塑膠基板的發展 101
第六章 結論 103
6.1 實驗結論 103
6.1.1 軟模仁紫外光轉印線條結論 103
6.1.2 軟模仁紫外光轉印柱狀結論 104
6.2 軟模仁熱壓式轉印線條部份結論 104
6.2.1 軟模仁熱壓式轉印線條部份結論 105
6.3 軟模仁紫外光轉印線條與軟模仁熱壓式轉印結構比較 105
6.4 在不成功轉印條件下產生圖形缺陷的討論 105
6.5 基板對於紫外光吸收度與穿透度的探討 106
6.6 轉印圖形的應用 106
參考文獻 108
[1]. Y. Chen, C. Vieu, and H. Launois, “High resolution X-ray lithography and electron-beam lithography: limits and prospectives,” Condensed Matter News, vol. 6, pp. 22–30, 1998.
[2]. T. Matsuzaka, “The present position and future status of electron beam lithographyfor VLSI fabrication,” Microelectronic Eng., vol. 35, pp. 3–9, 1998.
[3]. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B, vol. 14, no.6, pp. 4129–4133, 1996.
[4]. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett., vol. 67, pp. 3114–3116, 1995.
[5]. M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S.V. Sreenivasan, J. Ekerdt, and C. G. Willson, “Step and flash imprint lithography:A new approach to high-resolution patterning,” Proceedings of SPIE., vol. 3676, pp. 379–389, June 1999.
[6]. M. Bender, M. Otto, B. Hadam, B. Vratzov, B. Spangenberg, H. Kurz, “Fabrication of Nanostructures using a UV-based imprint technique,” Microelectron. Eng., vol. 53, pp. 233–236, 2000.
[7]. Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci., vol. 28, pp. 153–184, 1998.
[8]. A. Kura and G. M. Whitesides, “Features of gold having micrometer to centimetre dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol "ink" followed by chemical etching,” Appl. Phys. Lett., vol. 63, no.14, pp. 2002–2004, Oct. 1993.
[9]. Y. Kurashima, M. Komuro, H. Hiroshima, J. Taniguchi, and I. Miyamoto, “Evaluation of line edge roughness in nanoimprint lithography using photocurable polymer,” Jpn. J. Appl. Phys., vol. 42, no. 6B, pp. 3871–3873, June 2003.
[10]. M. Li, H. Tan, L. Kong, and L. Koecher, “Four-inch photo-curable nanoimprint lithography using NX-2000 nanoimprintor,” Proceedings of SPIE., Bellingham, WA , pp. 209–212, 2004.
[11]. X. Cheng, L. J. Guo, “A combined-nanoimprint-and-photolithography patterning technique,” Microelectronic Eng., vol. 71, pp. 277–282, May 2004.
[12]. Y. Hirai, T. Yoshikawa, M. Morimatsu, M. Nakajima, and H. Kawata, “Fine pattern transfer by nanocasting lithography,” Microelectronic Eng., vol. 78–79, pp. 641–646, Mar. 2005.
[13]. X. D. Huang, L. R. Bao, X. Cheng, L. J. Guo, S. W. Pang, and A. F. Yee, “Reversal imprinting by transferring polymer from mold to substrate,” J. Vac. Sci. Technol., vol. 20, no. 6, pp. 2872–2876, Nov/Dec 2002.
[14]. X. D. Huang, L. R. Bao, X. Cheng, L. J. Guo, S. W. Pang, and A. F. Yee, “Reversal imprinting by transferring polymer from mold to substrate,” J. Vac. Sci. Technol., vol. 20, no. 6, pp. 2872–2876, Nov/Dec 2002
[15]. Y. Hirai, K. Sogo, M. Nakajima, H. Kawata, “Reproduction of anti-reflection structures by nano casting method,” Proceedings of SPIE., vol. 6327, pp. Y01–Y08, Sep. 2006.
[16]. K. I. Nakamatsu, K. Tone, and S. Matsui, “Room-temperature nanoimprint lithography using photosensitive dry film,” Jpn. J. Appl. Phys., vol. 45, no. 5A, pp. 4290–4292, May 2006.
[17]. J Taniguchi, Y. Tokano, I. Miyamoto, M. Komuro, H. Hiroshima, K. Kobayashi, T. Miyazaki, H. Ohyi, ”Diamond mold for nanoimprint lithography”, Microprocesses and Nanotechnology Conference, pp. 190–191, July 2000.
[18]. U. Plachetka, M. Bender, A. Fuchs, B. Vratzov, T. Glinsner, F. Lindner, H. Kurz, “Wafer scale patterning by soft UV-nanoimprint lithography,” Microelectronic. Eng., vol. 73–74, pp. 167–171, Mar.2004.
[19]. W. M. Choi, O. O. Park, “A soft-imprint technique for direct fabrication of submicron scale patterns using a surface-modified PDMS mold”, Microelectronic Eng., vol. 70, pp. 131–136, July 2003.
[20]. W. M. Choi, O. O. Park, “Soft-imprint technique for multilevel microstructures using poly(dimethylsiloxane) mold combined with a screen mask”, Appl. Phys. Lett., vol. 85, pp. 3310–3312, Oct. 2004.
[21]. V. N. Truskett and M. P.C. Watts”, Trends in imprint lithography for biological applications”, TRENDS in Biotechnology, vol. 24, no. 7, pp. 312–317, July 2006.
[22]. D. Lehnert, B. W. Halle, C. David, U. Weiland, C. Ballestrem, B. A. Imhof and M. Bastmeyer”, Cell behaviour on micropatterned substrata: limits of extracellular matrix geometry for spreading and adhesion”, Journal of Cell Science, vol. 117, pp. 41-52, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔