(3.238.118.78) 您好!臺灣時間:2021/04/15 22:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:江健輝
論文名稱:摻雜Cr及V對AZO透明導電膜抗化性之研究
指導教授:林義成林義成引用關係
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:82
中文關鍵詞:AZO薄膜摻雜化學穩定性濺鍍
相關次數:
  • 被引用被引用:1
  • 點閱點閱:220
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目的在利用不同比例的摻雜Cr(chromium)及V(vanadium)元素進入AZO薄膜之中,探討添加不同比例之Cr及V兩種元素對AZO薄膜之光電特性影響;以及摻雜之AZO薄膜對蝕刻製程中化學穩定性之影響。首先藉由調變脈衝直流濺鍍功率、工作壓力與脈衝反轉時間等參數以得最佳之AZO薄膜製備條件;其次,以Cr及V金屬薄片置放於AZO靶材上並調變位置以改變摻雜量,並以所製得薄膜使用酸鹼溶液蝕刻,探討摻雜對化學穩定性的影響。研究中利用薄膜段差測試儀量測薄膜沉積厚度與蝕刻速率、X-ray繞射儀分析薄膜結晶性、四點探針及霍爾量測儀量測薄膜電性、紫外/可見光光譜儀量測薄膜於可見光穿透率、原子力顯微鏡量測薄膜表面粗糙度、掃描式電子顯微鏡觀察薄膜表面、X光能量分散光譜進行薄膜成份分析。研究結果顯示,於AZO摻雜Cr及V可助於AZO抗化性提升。於本實驗中最佳添加比例為V=0.19 wt.%,Cr=0.56 wt.%,可在提高AZO薄膜抗化性52%下及蝕刻後表面粗糙度下降128%下,可得電阻率3.62×10-3Ωcm,可見光穿透率80.77%,表面粗糙度Rms=2.0nm。由本實驗可知,造成KOH較HCl蝕刻後具較高之電阻率原因為蝕刻造成Zn/Al比下降,而使AZO薄膜電阻率上升。而造成KOH蝕刻後穿透率高於HCl之原因為KOH蝕刻後有較HCl蝕刻後好的表面粗糙度而有較佳的穿透率。
The purpose of this study is to investigate the effect of dopping different weight percent of chromium and vanadium in AZO films. That focuses on optical and electronic properties and chemical stability of doped AZO films. Sputtering parameters were adjusted by sputtering power, working pressure and reverse-time to obtain an optimum sputtering conditions. Cr and V sheets were used for dopping by changing their positions on the AZO target. Then the effects of optical and electronic properties and chemical stability of films after acid and alkali solution ctching. The etching rate, deposition rate, electric resistivity, crystalline, surface morphology and root mean square(Rms) roughness of the AZO film before/after the etching process were measured by α-step, four-point probe, x-ray diffraction(XRD), scanning electron microscopy (SEM), and atomic force microscopy(AFM), respectively. The composition analysis and depth profile of the ZnO:Al2O3 thin film were analyzed by EDS. From the result, AZO dopping Cr and V is useful to improve its chemical stability. As the dopping concentration being Cr/V=0.19/0.56wt.%, the chemical stability is increased about 52% and surface roughness is decreased about 128%, resistivity,transmittance and surface roughness(Rms) are 3.62×10-3Ωcm , 80.77% and 2.0nm,respectively.The resistivity of the film after KOH etching is higher than that of HCl etching because of the percentage of Zn/Al decreased. The transmittance of the film after KOH etching is higher than that of HCl etching because of its better surface roughness.
摘要……………………………………………………………………… I
謝誌……………………………………………………………………… III
目次……………………………………………………………………… IV
表次……………………………………………………………………… VIII
圖次……………………………………………………………………… IX


第一章 緒論……………………………………………… 1
1.1 透明導電薄膜………………………………………………… 1
1.2 磁控濺射法…………………………………………………… 3
1.3 研究動機與目的……………………………………………… 3
1.4 名詞解釋……………………………………………………… 5

第二章 文獻回顧………………………………………… 7
2.1 透明導電膜於TFT-LCD之應用技術與原理……………… 7
2.1.1 TFT-LCD基本原理與結構……………………………… 7
2.2 透明導電薄膜材料與製程………………………………… 8
2.2.1透明導電膜材料…………………………………………… 8
2.2.2 AZO透明導電薄膜………………………………………… 9
2.3 濺鍍原理…………………………………………………… 10
2.3.1脈衝濺鍍…………………………………………………… 11
2.3.2脈衝直流電漿之應用……………………………………… 13
2.4 脈衝濺鍍應用……………………………………………… 13
2.4.1脈衝頻率對薄膜電性的影響……………………………… 13
2.4.2脈衝週期對薄膜性質影響………………………………… 15
2.5 透明導電膜蝕摻雜………………………………………… 16
2.5.1摻雜對透明導電膜性質之影響…………………………… 16
2.6 透明導電膜蝕刻…………………………………………… 21
2.6.1濕蝕刻方式………………………………………………… 21
2.6.2摻雜對透明導電膜濕蝕刻性質之影響…………………… 21
2.7 V及Cr的基本性質………………………………………… 26
2.7.1 V (vanadium) ………………………………………… 26
2.7.2 Cr (chromium) ……………………………………… 26

第三章 研究方法………………………………………… 27
3.1 實驗流程…………………………………………………… 27
3.2 實驗步驗…………………………………………………… 27
3.2.1試片準備………………………………………………… 27
3.2.2薄膜沉積………………………………………………… 30
3.3 薄膜特性分析……………………………………………… 33
3.3.1沉積速率量測…………………………………………… 33
3.3.2微結構分析……………………………………………… 33
3.3.3電學性質量測…………………………………………… 35
3.3.4光學性質量測…………………………………………… 36
3.4 AZO透明導電膜蝕刻……………………………………… 37
3.4.1蝕刻溶液選擇…………………………………………… 37
3.4.2蝕刻實驗……………………………………………… 37
3.4.3蝕刻速率量測………………………………… 39
3.4.4 SEM表面影像………………………………… 39
3.4.5 EDS表面成份分析………………………………………… 40
3.4.6表面粗糙度量測……………………………………………… 40
3.4.7光學性質量測……………………………………………… 41
3.4.8電學性質量測………………………………………………… 41

第四章 結果與討論…………………………………………………… 42
4.1 脈衝直流濺鍍參數對AZO薄膜微結構及光電性質之影響…… 42
4.1.1濺鍍功率對薄膜性質的影響…………………………… 42
4.1.2工作壓力對薄膜性質的影響………………………………… 46
4.1.3脈衝反轉時間對薄膜性質的影響…………………………… 50
4.1.4 最佳AZO製程參數…………………………………………… 50
4.2 AZO摻雜V,Cr薄膜微結構及光電性質分析…………………… 54
4.2.1 AZO摻雜V,Cr薄膜成份分析……………… 54
4.2.2摻雜Cr及V對薄膜光電性質的影響………………… 57
4.3 AZO摻雜V,Cr薄膜化學穩定性之分析………………………… 61
4.3.1 AZO摻雜V,Cr薄膜酸鹼蝕刻速率宇表面變化…………… 61
4.3.2酸鹼溶液對薄膜電性質之影響……………………………… 67
4.3.3酸鹼溶液對薄膜光性質之影響……………………………… 73
4.4 最佳摻雜Cr及V比例……………………………………………… 75

第五章 結論與未來研究……………………………………………… 76
5.1 結論…………………………………………………………… 76
5.2 未來研究……………………………………………………… 77
參考文獻………………………………………………………………… 78
[1] 楊明輝, 透明導電膜材料與成膜技術的新發展,工業材料,第189期, 2000,pp.161~174。
[2] H. Sheng, N. W. Emanetoglu, S. Muthukumar, B.V. Yakshinskiy, S. Feng, and Y. Lu, ” Ta/Au Ohmic Contacts to n-Type ZnO”, Journal of Electronic Materials, 32, 2003, pp.935-938.

[3] S. Choi, G. Shin, H. Byum, S. G. Oh, S. Lee, “Application of interferometry for 3-dimensional visualization of MgO-layer erosion in a.c.-plasma display paneals”, Surface and Coatings Technology, 169-170, 2003, pp557-561.
[4] Y. C. Lin , S.J. Chang , Y. K. Su , T. Y. Tsai, C . S. Chang, S. C. Shei, C. W. Kuo, S. C. Chen, “InGaN/GaN light emitting diodes with Ni/Au, Ni/ITO and ITO p-type contacts”, Solid-State Electronics, 47, 2003, pp.849-853.
[5] Y. G. Wanga, S. P. Laua, X. H. Zhangb, H. H. Hngc, H. W. Leea, S. F. Yua, B. K. Taya , ” Enhancement of near-band-edge photoluminescence from ZnO films by face-to-face annealing”, Journal of Crystal Growth , 259 , 2003, pp.335–342.
[6] Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, H. W. White, ” Synthesis of p-type ZnO films”, Journal of Crystal Growth, 216, 2000, pp.330-334.
[7] J. L. Vossen, “Transparent Conducting Films”, Physics of Thin Film, 9, 1977, pp.1-64.
[8] 王家俊,”以射頻磁控濺鍍法成長摻雜氫之氧化鋅薄膜”,國立成功大學化學工程研究所碩士論文,2003
[9] E. G. Fu, D. M. Zhuang, G. Zhang, W. F. Yang, M. Zhao, “Substrate temperature dependence of the properties of ZAO thin films deposited by magnetron sputtering,” Applied Surface Science, 217,2003,pp.88-94.

[10] L. Davis, “Properties of Transparent Conducting Oxides Deposited
Room Temperature”, Thin Solid Films, 236, 1993, pp.1-5.
[11] H. W. Lehmann and R. Widmer, “Properties and Properties of Reactively Co-sputtered Transparent Conducting Films”, Thin Solid Films, 27, 1975, pp.359-368.
[12] E. Shanthi, A. Banerjee, V. Dutta and K. L. Chopra, “Electrical and
Optical Properties of Tin Oxide Films Doped with F and(Sb+F)”, Journal of Applied Physics, 53, 1982, pp.1615-1621.
[13] T. C. Gorjanc, D. Leong, D.Roth, “Room temperature deposition of ITO using RF magnetron sputtering”, Thin Solid Films 413, 2002, pp.181-185.
[14] H. C. Lee, J. Y. Seo, Y. W. Choi, D. W. Lee, “The growth of indium tin oxide thin films on glass substrates using DC reactive magnetron sputter”, Vacuum, 72, 2004, pp.269-276.
[15] 楊明輝,“脈衝磁控濺鍍技術介紹”,工業材料,232,2006,pp.91-98。
[16] 溫志中,“電漿粒子與物理薄膜沈積的關聯與發展”,工業材料,2004,pp77-83。
[17] 林葵棉, ” ZnO-Al 透明導電膜濺鍍及濕式蝕刻製程與分析” , 國立彰化師範大學機電工程研究所碩士論文,2005。
[18] C. Eberspacher, A. L. Fahrenbruch and R. H. Bube, “Properties of ZnO films deposited onto InP by spray pyrolysis”, Thin Solid Films, 136, 1986, pp.1-10.
[19] http://www.ie.thit.edu.tw/news/TFT-LCD.ppt.
[20] T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes”, Semiconductor Science and Technology, 20, 2005, pp.35-44
[21] D. L. Raimondi and E. Kay, “High Resistivity Transparent ZnO Thin Films”, Journal of Vacuum Science Technology, 7, 1, 1970, pp.96-99.
[22] G. A. Hirata, J. Mckittrik, T. Cheeks, J. M. Siqueiros, J. A. Diaz, O. Contreras, O. A. Lopez, “Synthesis and optelectronic characterization of gallium doped zinc oxide transparent electrodes”, Thin Solid Films, 288, 1996, pp.29-31.
[23] B. H. Choi and H. B. Im, “Optical and electrical properties of Ga2O3-doped ZnO films prepared by r.f. sputtering”, Thin Solid Films, 193-194, 1990, pp.712-720.
[24] T. Minami, H. Sato, H. Nanto, and S. Takata, “Highty Conductive and Transparent Silicon Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering”, Japanese Journal of Applied Physics, 25, 1986, pp.776-779.
[25] K. Tominaga, M. Kataoka, “Transparent ZnO:Al films prepared by co-sputtering of ZnO:Al with either a Zn or an Al target”, Thin Solid Films, 290-291, 1996, pp.84-87.
[26] Y. Igasaki and H. Saito, “The effects of zinc diffusion on the electrical and optical properties of ZnO:Al films prepared by r.f. reactive sputtering”, Thin Solid Films, 199, 1991, pp.223-230.
[27] K. C. Park, D. Y. Ma, K. H. Kim, “The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering” Thin Solid Films, 305, 1997, pp.201-209.
[28] W. J. Jeong and G. C. Park, “Electrical and optical properties of ZnO thin film as a function of deposition parameters”, Solar Energy Materials & Solar Cells, 65, 2001, pp. 37-45.
[29] X. Hao, J. Ma, D. Zhang, T. Yang, H. Ma, Y. Yang, C. Cheng and J. Huang, “Thickness dependence of structural, optical and electrical properties of ZnO:Al films prepared on flexible substrates”, Applied Surface Science, 183, 1-2, 2001, pp.137-142.
[30] L. R. Cruz, C. Legnani, I. G. Matoso, C. L. Ferreira, H. R. Moutinho, “Influence of pressure and annealing on the microstructure and electro optical properties of RF magnetron sputtered ITO thin film”, Materials Research Bulletin, 39, 2004, pp.993-1003.
[31] L. B. Jonsson, T. Nyberg, I. Katardjiev, S. Berg, “Frequency response in pulsed DC reactive sputtering processes”, Thin Solid Films, 365, 2000, pp.43-48.
[32] 葉通迪,“純直流及非對稱雙極脈衝直流離子氮化鈦之研究”,私立逢甲大學碩土論文,2001。
[33] J. C. Sellers, ENI, “Asymmetric bipolar pulse DC an enabling technology for reactive PVD”, ENI.100 High-power Rochester, 1996, NY14623.
[34] L. C. Jiangalss, “Technology for the sputtering deposition TiO2 ” , Chinese vacuum, http://www.chinesevacuum.com/homepageinfo/homepagearticle.
[35] H. Ko, W. P. Tai, K. C. Kim, S. H. Kim, S. J. Suh, Y. S. Kim, “Growth of Al-doped ZnO thin films by pulsed DC magnetron sputtering” , Journal of Crystal Growth, 277, 2005, pp.352-358.
[36] W. J. Lee, Y. K. Fang,” Optimizing indium tin oxide thin films with bipolar DC pulsed magnetron sputtering for electrochromic device applications”, Journal of Materials Science: Materials in Electronics, 13, 2002, pp. 751-756.
[37] T. Minami, S. Suzuki, T. Miyata, “Transparent conducting impurity co doped ZnO:Al thin films prepared by magnetron sputtering”, Thin Solid Films, 398-399, 2001, pp.53-58.
[38] S. Suzuki, T. Miytat, M. Ishii, T. Minami, “Transparent conducting V-co-doped AZO thin films prepared by magnetron sputtering”, Thin Solid Films, 434, 2003, pp.14–19.
[39] T. Miyata, S. Suzuki, M. Ishii, T. Minami, “New transparent conducting thin films using multicomponent oxides composed of ZnO and V2O5 prepared by magnetron sputtering” , Thin Solid Films, 411, 2002, pp.76–81.
[40] K. Tominaga, T. Takao, A. Fukushima, T. Moriga, I. Nakabayashi, “Film properties of ZnO:Al contaminated Zn targets with Co, Mn and Cr” , VACUUM, 66, 2002,pp.511-515.
[41] 紀國鐘,鄭晃忠, ”液晶顯示器技術手冊”,經濟部技術處,2002,pp.225-226。
[42] M. D. Olvera, A. Maldonado, R. Asomoza, M. Melendez-lira, “Chemical stability of doped ZnO thin films” , Journal of materials science:materials in electronics, 11, 2000,pp.1-5.
[43] A. Maldonado, M. delaL. Olvera, R. Asomoza, S.tirado-Guerra, “Characteristics of ZnO:Cr thin films deposited by spray pyrolysis” , The Journal of Vacuum Science and Technology A, 18, No. 5, 2000, pp.2098-2101.
[44] M. shinoda, T. Nishide, Y. Sawada, M. Hosaka, T. Matsumoto, “Stability of sputter deposited ZnO:Cr films Against Acids” , Japanese Journal of Applied Physics , 32, Part2, No. 10B, 1993, pp.L1565-L1567.
[45] T. Minami, T. Yamamoto, Y. Toda, T. Miyata, “Transparent conducting zinc-co-doped ITO films prepared by magnetron sputtering”, Thin Solids Films, 373, 2000, pp.189-194.
[46] T. H. Tsai, “Wet etching mechanisms of ITO films in oxalic acid”, Micro- electronic Engineering, 83, 3, 2006, pp.536-541.
[47] T. Minami, T. Kakumu, Y. Taketa, S. Takata, ”Highly transparent and conductive ZnO-In2O3 thin films prepared by d.c. magnetron sputtering”, Thin Solid Films, 209-291, 1996, pp.1-5.
[48] 蔡丕椿,蔡明雄,陳文照,廖金喜 編譯,”材料科學與工程” ,1994,3-29-3-32。
[49] http://203.72.198.245/web/Content.asp?ID=46126
[50] http://203.72.198.245/web/Content.asp?ID=45834&Query=1
[51] http://doclib.corning.com/DisplayTechnologies/AuthFiles/login.asp
[52] http://210.60.98.4/dmse/SEM.htm
[53] F. L. Wong, M. K. Fung, S. W. Tong, C. S. Lee, S. T. Lee, “Flexible organic light-emitting device based on magnetron sputtered indium-tin-oxide on plastic substrate”, Thin Solid Films, 466, 2004, pp.225-230.
[54] P. Canhola, T. N. Martins, L. Raniero, S. Pereira, E. Fortunato, I. Ferreira, R. Martins, “Role of annealing environment on the performances of large area ITO films produced by RF magnetron sputtering” , Thin Solid Films, 487, 2005, pp.271-276.
[55] J. H. Lan and J. Kanicki, “Patterning of transparent conducting oxide thin films wet etching for a-Si:H TFT-LCDs” , Journal of Electronic Materials, 25, 1996, pp.1806-1817.
[56] S. N. Alamri, A. W. Brinkman, “ The effect of the transparent conductive oxide on the performance of thin film CdS/CdTe solar cells” , Journal of Physics D:Applied Physics, 33, No1, 2000, pp.L1-L4.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔