(3.235.25.169) 您好!臺灣時間:2021/04/20 17:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:姚銘偉
研究生(外文):Ming-Wei Yao
論文名稱:使用磷砷化鎵與氮砷化鎵為位能障之光纖通訊用氮砷化銦鎵半導體雷射模擬與分析
論文名稱(外文):Numerical Study on InGaAsN Semiconductor Lasers with GaAsP and GaAsN Barrier Regions Applied in Optical Communication
指導教授:郭艷光
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:光電科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:78
中文關鍵詞:氮砷化銦鎵半導體雷射模擬磷砷化鎵氮砷化鎵
相關次數:
  • 被引用被引用:0
  • 點閱點閱:85
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主要探討使用磷砷化鎵與氮砷化鎵為位能障之光纖通訊用氮砷化銦鎵半導體雷射之雷射性能,因為氮砷化銦鎵半導體雷射已經在長波長光纖通訊的領域中扮演非常重要的角色。文章的一開始,我首先對於氮砷化銦鎵半導體雷射的發展做一簡短描述,並且針對其光學特性以及物理模型做一個簡單介紹。
第二章中,我參考其他研究團隊所提供的氮砷化銦鎵半導體雷射結構,並且使用LASTIP 模擬軟體來探討以磷砷化鎵或氮砷化鎵為位能障對於雷射性能的影響。當雷射結構以氮砷化鎵為位能障時,我也比較不同的氮含量對於雷射性能的影響,並且試圖找出氮含量的最佳值。
第三章中,我繼續探討不同量子井的氮砷化銦鎵半導體雷射之雷射性能,嘗試比較當雷射結構的量子井個數不同時,磷砷化鎵與氮砷化鎵位能障對於雷射性能的影響。最後,針對不同量子井個數的雷射結構,找出較適合的位能障材料,提供給大家做一個參考。
List of Figures................................................................................... VI
List of Tables..................................................................................... XII
Abstract.............................................................................................. XIV

Chapter 1. Introduction……………………………………………... 1

1.1 Introduction to Long-Wavelength Laser Diodes Applied in
Optical Communication…………………………………...... 1
1.2 Introduction to InGaAsN Material Properties……………..... 2
1.3 Type I Alignment for InGaAsN Material System……………. 4
1.4 First Continuous-Wave Operation InGaAsN Laser Structure. 5
1.5 InGaAsN Laser Structure with GaAsP and GaAsN Barrier
Region………………………………………………………. 9
1.6 Laser Performances of InGaAsN Laser Structure with
GaAsP Barrier Region………………………………………. 18
1.7 Laser Performances of InGaAsN Laser Structure with
GaAsN Barrier Region……………………………………… 21
1.8 Summary…………………………………………………………. 24

Chapter 2. Numerical Study on GaAsP and GaAsN Barrier Regions
for Triple-Quantum-Well InGaAsN/GaAs Semiconductor
Lasers…………………………………………………..... 32

2.1 Introduction to InGaAsN Laser Structure Used in This Study... 33
2.2 Physical Model and Parameters…………………………….... 37
2.3 Simulation Result and Discussion…………………………… 43
2.4 Summary…………………………………………………….... 57

Chapter 3. Numerical Study on Low-Threshold InGaAsN/GaAs Multiple-Quantum-Well Laser with GaAsP and GaAsN
Barrier Regions………………………………………….... 62

3.1 Simulation Result and Discussion………………………….... 63
3.2 Summary…………………………………………………….... 73

Chapter 4. Conclusion………………………………………………... 76
Appendix A. Publication List................................................................ i
Appendix B. Parameters Used in Program File.................................... iii

List of Figures

Fig. 1.1 Relationship between the lattice constant and band gap energy in III–V alloy semiconductors………………………………… 3
Fig. 1.2 Schematic diagram of the band lineup for InGaAs, GaAsN, and InGaAsN……………………………………………………… 5
Fig. 1.3 Schematic cross section of the first single-quantum-well InGaAsN/GaAs laser structure proposed by Kondow et al. ……………………………………………………………... 6
Fig. 1.4 Light-current performance curve of single-quantum-well InGaAsN/GaAs laser structure proposed by Kondow et al. under CW operation at room temperature. The threshold current of 275 mA is obtained…........................................................... ..7
Fig. 1.5 Current-voltage characteristics of single-quantum-well InGaAsN/GaAs laser structure proposed by Kondow et al. under CW operation at room temperature. The turn on voltage is about 0.7 V and the electrical resistance during lasing operation is measured to be 2.5 Ω………………………………………...8
Fig. 1.6 Relationship of threshold current density and temperature for single-quantum-well InGaAsN/GaAs laser structure proposed by Kondow et al. under CW operation. The characteristic temperature of 126 K is achieved in the temperature range of 25 ºC to 85 ºC………………………………………………...........9
Fig. 1.7 Photoluminescence of uncompensated In0.4Ga0.6As0.995N0.005/GaAs, In0.4Ga0.6As0.992N0.008/GaAs, and strain-compensated In0.4Ga0.6As0.995N0.005/GaAs0.85P0.15 active regions at room temperature………………………………….11
Fig. 1.8 Wavelength emission and conduction band offset for 6-nm (a) In0.3Ga0.7As1–xNx and (b) In0.35Ga0.65As1–xNx quantum well with GaAs and GaAs0.8P0.2 barriers at room temperature……………………………………………………12
Fig. 1.9 Schematic band diagram of InGaAsN quantum well with GaAsP barrier region………………………………………….13
Fig. 1.10 (a) Band gap energy for tensile-strained GaAsN alloy on GaAs (denoted by curve (i) and circles), InGaAsN strain compensated alloy (denoted by triangle) and unstrained quaternary InGaAsN alloy to GaAs (denoted by curve (ii)) versus nitrogen alloy composition at 300 K. (b) Bowing parameter of band gap energy of GaAs–GaN material system for tensile-strained dilute GaAsN alloy. Unstrained GaAsN alloy is denoted by dotted line in (a) and (b)…………………………………………………..15
Fig. 1.11 Dependence of the ground state transition energy for 6.2-nm (i) GaAs/GaAs1–xNx/GaAs and (ii) GaAs/In0.3Ga0.7As1–xNx/GaAs quantum wells versus nitrogen composition. (iii) Band gap of tensile-strained GaAsN on GaAs……………………………..16
Fig. 1.12 Schematic band diagram of InGaAsN quantum well with GaAsN barrier region…………………………………………17
Fig. 1.13 Schematic band diagram of In0.4Ga0.6As0.995N0.005 quantum well with GaAs0.97N0.03 barrier region……………………………...18
Fig. 1.14 Cross section of strain-compensated InGaAsN single quantum well laser structure with GaAsP barrier region proposed by Tansu et al.………………........................................................19
Fig. 1.15 L-I performance curve for InGaAsN single quantum well laser structure with GaAsP barrier region proposed by Tansu et al. The threshold current is 15.5 mA at 20 ºC. Inset: Spectra at 1.292 µm at 20 ºC………………………………………..........19
Fig. 1.16 Threshold current and external differential quantum efficiency ηd versus operating temperature for InGaAsN single quantum well laser structure with GaAsP barrier region proposed by Tansu et al. The characteristic temperature of 93 K is achieved in the temperature range of 20 ºC to 60 ºC……………………20
Fig. 1.17 Cross section of strain-compensated InGaAsN single quantum well laser structure with GaAsN barrier region proposed by Li et al……………………………………………………………21
Fig. 1.18 Cross section of strain-compensated InGaAsN single quantum well laser structure with GaAsN barrier region proposed by Li et al……………………………………………………………23
Fig. 1.19 L-I performance curve for strain-compensated InGaAsN single quantum well laser diode structure with GaAsN barrier region proposed by Li et al. Inset: Spectra at 1.317 µm…………………………………………………………….23
Fig. 1.20 Threshold current as a function of temperature for strain-compensated InGaAsN single quantum well laser diode structure with GaAsN barrier region proposed by Li et al. Under pulsed operation, the characteristic temperature of 104 K is achieved……………………………………………………….24

Fig. 2.1 Schematic cross section of the triple-quantum-well InGaAsN/GaAs laser structure proposed by Liu et al.………..33
Fig. 2.2 L-I performance curves of InGaAsN/GaAs laser structures with different ridge width of (a) 100 µm, (b) 50 µm, (c) 10 µm, and (d) 4 µm……………………………………………………..36
Fig. 2.3 ln(Ith) as a function of temperature proposed by Liu et al…….36
Fig. 2.4 (a) L-I performance curves and (b) relationship between ln(Ith) and temperature of the InGaAsN laser structure proposed by Liu et al. obtained from simulation. The characteristic temperature of 162.4 K is achieved..……………………………………….44
Fig. 2.5 Inset: design of InGaAsN/(In)GaAsN/GaAs multiple-quantum-well structure proposed by (a) Kim et al. and (b) Jouhti et al. ……………………………………………….45
Fig. 2.6 Schematic conduction band diagram of InGaAsN/GaAs/GaAsP and InGaAsN/GaAsN/GaAs structures……………….………46
Fig. 2.7 (a) Peak wavelength and (b) gain peak as a function of temperature as the injected carrier density is 5×1018 cm–3…………………………………………………………...47
Fig. 2.8 Curves of valence subband for the InGaAsN quantum well with (a) indirect-GaAs0.82P0.18, (b) direct-GaAs0.995N0.005, (c) direct-GaAs0.99N0.01, and (d) direct-GaAs0.985N0.015 barriers as the injected carrier density is 5×1018 cm–3 at 293 K………………………………………………………………48
Fig. 2.9 Threshold current versus temperature for triple-quantum-well InGaAsN structures with indirect-GaAs0.82P0.18 and direct-GaAs1–xNx (x = 0.5%-1.5%) barriers…………………..50
Fig. 2.10 Band diagrams of triple-quantum-well InGaAsN laser structures with (a) indirect-GaAs0.82P0.18 and (b) direct-GaAs0.995N0.005 barriers as the injected current is 150 mA at 333 K…………..52
Fig. 2.11 (a) Electron and (b) hole densities distribute in the epitaxial growth direction for structures with indirect-GaAs0.82P0.18 and direct-GaAs0.995N0.005 barriers as the injected current is 150 mA at 333 K……………………………………………………….54
Fig. 2.12 Local gain in the quantum wells for structures with indirect-GaAs0.82P0.18 and direct-GaAs0.995N0.005 barriers as the injected current is 150 mA at 333 K……………………. ……55
Fig. 2.13 Difference of carrier density in the quantum wells for structures with indirect-GaAs0.82P0.18 and direct-GaAs0.995N0.005 barriers as the injected current is 150 mA at 333 K………………………56
Fig. 2.14 Auger recombination rate for the structures with indirect-GaAs0.82P0.18 and direct-GaAs0.995N0.005 barriers as the injected current is 150 mA at 333 K.………………………….56
Fig. 3.1 Gain spectra for the InGaAsN quantum well with indirect-GaAsP and direct-GaAsN barriers…………………...64
Fig. 3.2 Valence subbands for the InGaAsN quantum well with indirect-GaAsP and direct-GaAsN barriers………………… ..65
Fig. 3.3 L-I performancee curves of single-quantum-well structures with indirect-GaAsP and direct-GaAsN barriers…………………...66
Fig. 3.4 Threshold current versus operating temperature of double-quantum-well structures with indirect-GaAsP and direct-GaAsN barriers………………………………………...66
Fig. 3.5 Threshold current versus operating temperature of triple-quantum-well structures with indirect-GaAsP and direct-GaAsN barriers………………………………………... 68
Fig. 3.6 Auger recombination rates of triple-quantum-well structures in the epitaxial growth direction as operating temperatures are (a) 293 K and (b) 353 K. The x-axis is the distance along growth direction. The origin of x-axis is located at the bottom of the substrate……………………………………………………….69
Fig. 3.7 Threshold current versus operating temperature as the structure has four quantum wells……………………………………….70
Fig. 3.8 Auger recombination rates of four-quantum-well structures in the epitaxial growth direction as operating temperatures are (a) 293 K and (b) 353 K. The x-axis is the distance along growth direction. The origin of x-axis is located at the bottom of the substrate……………………………………………………….71
Fig. 3.9 Threshold current versus operating temperature as the structure has five quantum wells………………………………………..72




List of Tables

Table 1.1 Laser performances of InGaAsN/GaAs laser structures proposed by other research groups………………………… 26
Table 2.1 Information of each layer in InGaAsN/GaAs laser structure proposed by Liu et al.……………………………………….35
Table 2.2 Material parameters of the binary semiconductors used in this study………………………………………………………...42
Table 2.3 Summary value of tensile strain, wavelength temperature dependence dλ/dT, separation energy ΔE, and characteristic temperature T0 for triple-quantum-well InGaAsN structures with indirect-GaAs0.82P0.18 and direct-GaAs1–xNx (x = 0.5%–1.5%) barriers…………………………………………57
Table 3.1 Characteristic temperatures of different numbers of quantum wells structures with indirect-GaAsP and direct-GaAsN barriers…………………………………………………........73
[1] S. R. Selmic, T. M. Chou, J. Sih, J. B. Kirk, A. Mantie, J. K. Butler, D. Bour, and G. A. Evans, “Design and characterization of 1.3-µm AlGaInAs–InP multiple-quantum-well lasers,” IEEE J. Select. Top. Quantum Electron., vol. 7, pp. 340–349, 2001.
[2] Y. G. Zhang, J. X. Chen, Y. Q. Chen, M. Qi, A. Z. Li, K. Fröjdh, and B. Stoltz, “Characteristics of strain compensated 1.3 µm InAsP/InGaAsP ridge waveguide laser diodes grown by gas source MBE,” J. Crystal Growth, vol. 227, pp. 329–333, 2001.
[3] J. Wei, F. Xia, C. Li, and S. R. Forrest, “High T0 long-wavelength InGaAsN quantum-well lasers grown by GSMBE using a solid arsenic source,” IEEE Photon. Technol. Lett., vol. 14, pp. 597–599, 2002.
[4] T. Ishikawa, T. Higashi, T. Uchida, T. Yamamoto, T. Fujii, H. Shoji, M. Kobayashi, and H. Soda, “Well-thickness dependence of high-temperature characteristics in 1.3-µm AlGaInAs–InP strained-multiple-quantum-well lasers,” IEEE Photon. Technol. Lett., vol. 10, pp. 1703–1705, 1998.
[5] T. J. Houle, J. C. L. Yong, C. M. Marinelli, S. Yu, J. M. Rorison, I. H. White, J. K. White, A. J. SpringThorpe, and B. Garrett, “Characterization of the temperature sensitivity of gain and recombination mechanisms in 1.3-µm AlGaInAs MQW Lasers,” IEEE J. Quantum Electron., vol. 41, pp. 132–139, 2005.
[6] M. Hetterich, M. D. Dawson, A. Yu. Egorov, D. Bernklau, and H. Riechert, “Electronic states and band alignment in GalnNAs/GaAs quantum-well structures with low nitrogen content,” Appl. Phys. lett., vol. 71, pp. 1030–1032, 2000.
[7] M. Kondow, T. Kitatani, S. Nakatsuka, M. C. Larson, K. Nakahara, Y. Yazawa, M. Okai, and K. Uomi, “GaInNAs: a novel material for long-wavelength semiconductor lasers,” IEEE J. Select. Top. Quantum Electron., vol. 3, pp. 719–730, 1997.
[8] M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, “GaInNAs: a novel material for long-wavelength-range laser diodes with excellent high-temperature performance,” Jpn. J. Appl. Phys., vol. 35, pp. 1273–1275, 1996.
[9] N. Tansu, J. Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapor deposition,” J. Phys.: Condens. Matter, vol. 16, pp. S3277–S3381, 2004.
[10] Y. Qu, C. Y. Liu, and S. Yuan, “High-power 1.3–µm InGaAsN strain-compensated lasers fabricated with pulsed anodic oxidation,” Appl. Phys. Lett., vol. 85, pp. 5149–5151, 2004.
[11] N. Tansu and L. J. Mawst, “Low-threshold strain-compensated InGaAs(N) ( λ = 1.19–1.31 µm) quantum-well lasers,” IEEE Photon. Technol. Lett., vol. 14, pp. 444–446, 2002.
[12] T. Nakamura, T. Okuda, R. Kobayashi, Y. Muroya, K. Tsuruoka, Y. Ohsawa, T. Tsukuda, and S. Ishikawa, “1.3–µm AlGaInAs strain compensated MQW-buried-heterostructure lasers for uncooled 10-Gb/s operation,” IEEE J. Select. Top. Quantum Electron., vol. 11, pp. 141–148, 2005.
[13] W. Li, J. Turpeinen, P. Melanen, P. Savolainen, P. Uusimaa, and M. Pessa, “Effects of rapid thermal annealing on strain-compensated GaInNAs/GaAsP quantum well structures and lasers,” Appl. Phys. Lett., vol. 78, pp. 91–93, 2001.
[14] H. Carrère, X. Marie, J. Barrau, T. Amand, S. B. Bouzid, V. Sallet, and J. C. Harmand, “Band structure calculation of InGaAsN/GaAs, InGaAsN/GaAsP/GaAs and InGaAsN/InGaAsP/InP strained quantum wells,” IEE Proc.-Optoelectron., vol. 151, pp. 402–406, 2004.
[15] N. Tansu, J. Y. Yeh, and L. J. Mawst, “Improved photoluminescence of InGaAsN–(In)GaAsP quantum well by organometallic vapor phase epitaxy using growth pause annealing,” Appl. Phys. Lett., vol. 82, pp. 3008–3010, 2003.
[16] J. Y. Yeh, L. J. Mawst, and N. Tansu, “Characteristics of InGaAsN/GaAsN quantum well lasers emitting in the 1.4–µm regime,” J. Crystal Growth, vol. 272, pp. 719–725, 2004.
[17] W. Li, T. Jouhti, C. S. Peng, J. Konttinen, P. Laukkanen, E. M. Pavelescu, M. Dumitrescu, and M. Pessa, “Low-threshold-current 1.32–µm GaInNAs/GaAs single-quantum-well lasers grown by molecular-beam epitaxy,” Appl. Phys. Lett., vol. 79, pp. 3386–3388, 2001.
[18] W. Ha, V. Gambin, M. Wistey, S. Bank, S. Kim, and J. S. Harris, “Multiple-quantum-well GaInNAs–GaNAs ridge-waveguide laser diodes operating out to 1.4 µm,” IEEE Photon. Technol. Lett., vol. 14, pp. 591–593, 2002.
[19] E. M. Pavelescu, C. S. Peng, T. Jouhti, J. Konttinen, W. Li, M. Pessa, M. Dumitrescu, and S. Spânulescu, “Effects of insertion of strain-mediating layers on luminescence properties of 1.3–µm GaInNAs/GaNAs/GaAs quantum-well structures,” Appl. Phys. Lett., vol. 80, pp. 3054–3056, 2002.
[20] N. Tansu, J. Y. Yeh, and L. J. Mawst, “Low-threshold 1317–nm InGaAsN quantum-well lasers with GaAsN barriers,” Appl. Phys. Lett., vol. 83, pp. 2512–2514, 2003.
[21] T. Jouhti, C. S. Peng, E. M. Pavelescu, J. Konttinen, L. A. Gomes, O. G. Okhotnikov, and M. Pessa, “Strain-compensated GaInNAs structures for 1.3-µm lasers,” IEEE J. Select. Top. Quantum Electron., vol. 8, pp. 787–794, 2002.
[22] Y. Q. Wei, Y. Fu, X. D. Wang, P. Modh, P. O. Hedekvist, Q. F. Gu, M. Sadeghi, S. M. Wang, and A. Larsson, “Direct comparison of threshold and gain characteristics of 1300 nm GaInNAs lasers with GaNAs and GaAs barriers,” Appl. Phys. Lett., vol. 87, p. 081102, 2005.
[23] W. J. Fan, S. T. Ng, S. F. Yoon, M. F. Li, T. C. Chong, “Effects of tensile strain in barrier on optical gain spectra of GaInNAs/GaAsN quantum wells,” J. Appl. Phys., vol. 93, pp. 5836–5838, 2003.
[24] A. Y. Egorov, D. Bernklau, B. Borchert, S. Illek, D. Livshits, A. Rucki, M. Schuster, A. Kaschner, A. Hoffmann, G. Dumitras, M. C. Amann, and H. Riechert, “Growth of high quality InGaAsN heterostructures and their laser application,” J. Crystal Growth, vol. 227, pp. 545–552, 2001.
[25] M. Toivonen, A. Salokatve, M. Jalonen, J. Näppi, H. Asonen, M. Pessa, and R. Murison, “All solid source molecular beam epitaxy growth of 1.35 µm wavelength strained-layer GalnAsP quantum well laser,” Electron. Lett., vol. 31, pp. 797–799, 1995.
[26] F. Höhnsdorf, J. Koch, S. Leu, W. Stolz, B. Borchert, and M. Druminski, “Reduced threshold current densities of (Galn)(NAs)/GaAs single quantum well lasers for emission wavelengths in the range 1.28–1.38 µm,” Electron. Lett., vol. 35, pp. 571–572, 1999.
[27] D. A. Livshits, A. Y. Egorov and H. Riechert, “8W continuous wave operation of InGaAsN lasers at 1.3 µm,” Electron. Lett., vol. 36, pp. 1381–1382, 2000.
[28] S. Sato, “Low threshold and high characteristic temperature 1.3µm Range GaInNAs lasers grown by metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys., vol. 39, pp. 3403–3405, 2000.
[29] M. Kawaguchi, T. Miyamoto E. Gouardes, D. Schlenker, T. Kondo, F. Koyama, and K. Iga, “Lasing characteristics of low-threshold GaInNAs lasers grown by metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys., vol. 40, pp. L744–L746, 2001.
[30] C. S. Peng, T. Jouhti, P. Laukkanen, E. M. Pavelescu, J. Konttinen, W. Li, and M. Pessa, “1.32–µm GaInNAs–GaAs laser with a low threshold current density,” IEEE Photon. Technol. Lett., vol. 14, pp. 275–277, 2002.
[31] N. Tansu, N. J. Kirsch, and L. J. Mawst, “Low-threshold-current-density 1300–nm dilute-nitride quantum well lasers,” Appl. Phys. Lett., vol. 81, pp. 2523–2525, 2002.
[32] C. Y. Liu, Y. Qu, S. Yuan, and S. F. Yoon, “Optimization of ridge height for the fabrication of high performance InGaAsN ridge waveguide lasers with pulsed anodic oxidation,” Appl. Phys. Lett., vol. 85, pp. 4594–4596, 2004.
[33] C. Y. Liu, S. F. Yoon, W. J. Fan, A. Uddin, and S. Yuan, “Ridge-width dependence on high-temperature continuous-wave operation of native oxide-confined InGaAsN triple-quantum-well lasers,” IEEE Photon. Technol. Lett., vol. 18, pp. 791–793, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔