|
[1] S. R. Selmic, T. M. Chou, J. Sih, J. B. Kirk, A. Mantie, J. K. Butler, D. Bour, and G. A. Evans, “Design and characterization of 1.3-µm AlGaInAs–InP multiple-quantum-well lasers,” IEEE J. Select. Top. Quantum Electron., vol. 7, pp. 340–349, 2001. [2] Y. G. Zhang, J. X. Chen, Y. Q. Chen, M. Qi, A. Z. Li, K. Fröjdh, and B. Stoltz, “Characteristics of strain compensated 1.3 µm InAsP/InGaAsP ridge waveguide laser diodes grown by gas source MBE,” J. Crystal Growth, vol. 227, pp. 329–333, 2001. [3] J. Wei, F. Xia, C. Li, and S. R. Forrest, “High T0 long-wavelength InGaAsN quantum-well lasers grown by GSMBE using a solid arsenic source,” IEEE Photon. Technol. Lett., vol. 14, pp. 597–599, 2002. [4] T. Ishikawa, T. Higashi, T. Uchida, T. Yamamoto, T. Fujii, H. Shoji, M. Kobayashi, and H. Soda, “Well-thickness dependence of high-temperature characteristics in 1.3-µm AlGaInAs–InP strained-multiple-quantum-well lasers,” IEEE Photon. Technol. Lett., vol. 10, pp. 1703–1705, 1998. [5] T. J. Houle, J. C. L. Yong, C. M. Marinelli, S. Yu, J. M. Rorison, I. H. White, J. K. White, A. J. SpringThorpe, and B. Garrett, “Characterization of the temperature sensitivity of gain and recombination mechanisms in 1.3-µm AlGaInAs MQW Lasers,” IEEE J. Quantum Electron., vol. 41, pp. 132–139, 2005. [6] M. Hetterich, M. D. Dawson, A. Yu. Egorov, D. Bernklau, and H. Riechert, “Electronic states and band alignment in GalnNAs/GaAs quantum-well structures with low nitrogen content,” Appl. Phys. lett., vol. 71, pp. 1030–1032, 2000. [7] M. Kondow, T. Kitatani, S. Nakatsuka, M. C. Larson, K. Nakahara, Y. Yazawa, M. Okai, and K. Uomi, “GaInNAs: a novel material for long-wavelength semiconductor lasers,” IEEE J. Select. Top. Quantum Electron., vol. 3, pp. 719–730, 1997. [8] M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, “GaInNAs: a novel material for long-wavelength-range laser diodes with excellent high-temperature performance,” Jpn. J. Appl. Phys., vol. 35, pp. 1273–1275, 1996. [9] N. Tansu, J. Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapor deposition,” J. Phys.: Condens. Matter, vol. 16, pp. S3277–S3381, 2004. [10] Y. Qu, C. Y. Liu, and S. Yuan, “High-power 1.3–µm InGaAsN strain-compensated lasers fabricated with pulsed anodic oxidation,” Appl. Phys. Lett., vol. 85, pp. 5149–5151, 2004. [11] N. Tansu and L. J. Mawst, “Low-threshold strain-compensated InGaAs(N) ( λ = 1.19–1.31 µm) quantum-well lasers,” IEEE Photon. Technol. Lett., vol. 14, pp. 444–446, 2002. [12] T. Nakamura, T. Okuda, R. Kobayashi, Y. Muroya, K. Tsuruoka, Y. Ohsawa, T. Tsukuda, and S. Ishikawa, “1.3–µm AlGaInAs strain compensated MQW-buried-heterostructure lasers for uncooled 10-Gb/s operation,” IEEE J. Select. Top. Quantum Electron., vol. 11, pp. 141–148, 2005. [13] W. Li, J. Turpeinen, P. Melanen, P. Savolainen, P. Uusimaa, and M. Pessa, “Effects of rapid thermal annealing on strain-compensated GaInNAs/GaAsP quantum well structures and lasers,” Appl. Phys. Lett., vol. 78, pp. 91–93, 2001. [14] H. Carrère, X. Marie, J. Barrau, T. Amand, S. B. Bouzid, V. Sallet, and J. C. Harmand, “Band structure calculation of InGaAsN/GaAs, InGaAsN/GaAsP/GaAs and InGaAsN/InGaAsP/InP strained quantum wells,” IEE Proc.-Optoelectron., vol. 151, pp. 402–406, 2004. [15] N. Tansu, J. Y. Yeh, and L. J. Mawst, “Improved photoluminescence of InGaAsN–(In)GaAsP quantum well by organometallic vapor phase epitaxy using growth pause annealing,” Appl. Phys. Lett., vol. 82, pp. 3008–3010, 2003. [16] J. Y. Yeh, L. J. Mawst, and N. Tansu, “Characteristics of InGaAsN/GaAsN quantum well lasers emitting in the 1.4–µm regime,” J. Crystal Growth, vol. 272, pp. 719–725, 2004. [17] W. Li, T. Jouhti, C. S. Peng, J. Konttinen, P. Laukkanen, E. M. Pavelescu, M. Dumitrescu, and M. Pessa, “Low-threshold-current 1.32–µm GaInNAs/GaAs single-quantum-well lasers grown by molecular-beam epitaxy,” Appl. Phys. Lett., vol. 79, pp. 3386–3388, 2001. [18] W. Ha, V. Gambin, M. Wistey, S. Bank, S. Kim, and J. S. Harris, “Multiple-quantum-well GaInNAs–GaNAs ridge-waveguide laser diodes operating out to 1.4 µm,” IEEE Photon. Technol. Lett., vol. 14, pp. 591–593, 2002. [19] E. M. Pavelescu, C. S. Peng, T. Jouhti, J. Konttinen, W. Li, M. Pessa, M. Dumitrescu, and S. Spânulescu, “Effects of insertion of strain-mediating layers on luminescence properties of 1.3–µm GaInNAs/GaNAs/GaAs quantum-well structures,” Appl. Phys. Lett., vol. 80, pp. 3054–3056, 2002. [20] N. Tansu, J. Y. Yeh, and L. J. Mawst, “Low-threshold 1317–nm InGaAsN quantum-well lasers with GaAsN barriers,” Appl. Phys. Lett., vol. 83, pp. 2512–2514, 2003. [21] T. Jouhti, C. S. Peng, E. M. Pavelescu, J. Konttinen, L. A. Gomes, O. G. Okhotnikov, and M. Pessa, “Strain-compensated GaInNAs structures for 1.3-µm lasers,” IEEE J. Select. Top. Quantum Electron., vol. 8, pp. 787–794, 2002. [22] Y. Q. Wei, Y. Fu, X. D. Wang, P. Modh, P. O. Hedekvist, Q. F. Gu, M. Sadeghi, S. M. Wang, and A. Larsson, “Direct comparison of threshold and gain characteristics of 1300 nm GaInNAs lasers with GaNAs and GaAs barriers,” Appl. Phys. Lett., vol. 87, p. 081102, 2005. [23] W. J. Fan, S. T. Ng, S. F. Yoon, M. F. Li, T. C. Chong, “Effects of tensile strain in barrier on optical gain spectra of GaInNAs/GaAsN quantum wells,” J. Appl. Phys., vol. 93, pp. 5836–5838, 2003. [24] A. Y. Egorov, D. Bernklau, B. Borchert, S. Illek, D. Livshits, A. Rucki, M. Schuster, A. Kaschner, A. Hoffmann, G. Dumitras, M. C. Amann, and H. Riechert, “Growth of high quality InGaAsN heterostructures and their laser application,” J. Crystal Growth, vol. 227, pp. 545–552, 2001. [25] M. Toivonen, A. Salokatve, M. Jalonen, J. Näppi, H. Asonen, M. Pessa, and R. Murison, “All solid source molecular beam epitaxy growth of 1.35 µm wavelength strained-layer GalnAsP quantum well laser,” Electron. Lett., vol. 31, pp. 797–799, 1995. [26] F. Höhnsdorf, J. Koch, S. Leu, W. Stolz, B. Borchert, and M. Druminski, “Reduced threshold current densities of (Galn)(NAs)/GaAs single quantum well lasers for emission wavelengths in the range 1.28–1.38 µm,” Electron. Lett., vol. 35, pp. 571–572, 1999. [27] D. A. Livshits, A. Y. Egorov and H. Riechert, “8W continuous wave operation of InGaAsN lasers at 1.3 µm,” Electron. Lett., vol. 36, pp. 1381–1382, 2000. [28] S. Sato, “Low threshold and high characteristic temperature 1.3µm Range GaInNAs lasers grown by metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys., vol. 39, pp. 3403–3405, 2000. [29] M. Kawaguchi, T. Miyamoto E. Gouardes, D. Schlenker, T. Kondo, F. Koyama, and K. Iga, “Lasing characteristics of low-threshold GaInNAs lasers grown by metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys., vol. 40, pp. L744–L746, 2001. [30] C. S. Peng, T. Jouhti, P. Laukkanen, E. M. Pavelescu, J. Konttinen, W. Li, and M. Pessa, “1.32–µm GaInNAs–GaAs laser with a low threshold current density,” IEEE Photon. Technol. Lett., vol. 14, pp. 275–277, 2002. [31] N. Tansu, N. J. Kirsch, and L. J. Mawst, “Low-threshold-current-density 1300–nm dilute-nitride quantum well lasers,” Appl. Phys. Lett., vol. 81, pp. 2523–2525, 2002. [32] C. Y. Liu, Y. Qu, S. Yuan, and S. F. Yoon, “Optimization of ridge height for the fabrication of high performance InGaAsN ridge waveguide lasers with pulsed anodic oxidation,” Appl. Phys. Lett., vol. 85, pp. 4594–4596, 2004. [33] C. Y. Liu, S. F. Yoon, W. J. Fan, A. Uddin, and S. Yuan, “Ridge-width dependence on high-temperature continuous-wave operation of native oxide-confined InGaAsN triple-quantum-well lasers,” IEEE Photon. Technol. Lett., vol. 18, pp. 791–793, 2006.
|