跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/13 10:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝如萍
研究生(外文):Ju-Ping Hsieh
論文名稱:聚乙二醇處理木材粒片對粒片板性質之影響
論文名稱(外文):Effect of treatments with polyethylene glycol on the properties of particleboard
指導教授:蔡佺廷蔡佺廷引用關係
指導教授(外文):Chuan-Ting Tsai
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:森林暨自然資源研究所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:93
中文關鍵詞:放射松尺寸安定性聚乙二醇粒片板
外文關鍵詞:Radiata pinedimensional stabilitypolyethylene glycolparticleboard
相關次數:
  • 被引用被引用:3
  • 點閱點閱:671
  • 評分評分:
  • 下載下載:88
  • 收藏至我的研究室書目清單書目收藏:0
為了增加木材廢棄物的利用,於是木質板材因應而生,但其形體較不穩定,因此如何使其尺寸更具安定性,則是目前極欲改善的目標。有鑑於此,本研究則以殘餘材製成粒片,分別浸漬於不同濃度聚乙二醇溶液中;另一方面,於上膠時將不同濃度之聚乙二醇溶液與粒片、尿素膠充份混合,依一定程序完成製板。隨後,進行粒片板物理機械及尺寸安定性性質測試。
由各種粒片之FTIR圖譜得知,對照組與經聚乙二醇處理之粒片,並沒有新的吸收峰出現,但羥基量增加。另外,這兩種處理方法之粒片板,其密度為0.64~0.66g/cm3之間與未處理材無明顯差異。而含水率以浸漬方式者最低。所有條件之粒片板其甲醛釋出量皆未符合游離甲醛釋出F2級標準(0.5 mg/L以下)。彈性模數及破壞模數方面,兩種處理方式其強度會隨著聚乙二醇濃度之增加而明顯下降,但以添加方式者較佳,且與未處理材差異不顯著。
尺寸安定性方面,浸漬方式之粒片板其收縮率會因濃度的增加而明顯下降,其體積抗收縮效能以濃度20%時達最大值(93.26%);添加方式之收縮率較浸漬方式為高,體積抗收縮效能最高只達58.91%,顯示粒片板之體積抗收縮效能以浸漬方式效果較佳,可使形體較安定。另外,於40℃、RH75%及90%條件下,膨脹率顯示浸漬方式乃隨濃度之增加膨脹率降低越趨明顯,且體積抗膨脹效能高於添加方式。而當聚乙二醇濃度越高,吸濕率則降低,由結果得知浸漬方式之抗吸濕率乃高於添加方式,顯示具較佳之安定效果。推斷這種粒片板會減少其吸濕能力,或許是聚乙二醇將粒片包覆著,如同附上一層保護層,且由於其吸濕性強於木材,因而使得濕氣無法再與木材的羥基結合所致。在抗吸濕率方面,添加方式之效果雖較浸漬方式不顯著,但強度高於浸漬方式,因此慮及兩種方式之處理作業,則以添加方式較減少製板的時間及節省成本。
經由聚乙二醇改質之粒片板,其機械性質方面雖較一般粒片板略
低,但其尺寸安定性卻大為提高,若使用於非結構性場合,則不失為一種可行的處理方法。
For increasing the usage of wood waste, the wood-based board was produced .But its dimension was not stable, so how to keep its stability is the first target to improve. This study used PEG as a stabilizing agent.Two methods, i.e. soaking wood particles and adding into the adhesive were carried out, the concentration of PEG were 5%、10%、15% and 20%, respetively. After pressing, the boards were put into conditioning room(20℃,65%RH) for 7 days. The physical mechanical and dimensional stability were measured.
According to the FTIR spectrogram of various particles, control and soaking with polyethylene glycol, there was no new absorption peak in soaking sample compared to the control, but the amount of hydroxyl group was increased.Besides, the density for the two different treatment methods of particleboards was between 0.64 and 0.66g/cm3. That was no significant difference between them. The moisture content of soaked board was lower. The release amount of free formaldehyde of all the conditioned particleboard unmatched F2 standard (below 0.5mg/L). As regards the modulus of elasticity and modulus of rupture,the strength of these two treatments will be lower obviously because of the increasing of concentration of polyethylene glycol, but it was a better method by additive , and it was no significant difference with non-treated
wood.
As for the dimensional stability, percentage of shrinkage for particleboard by soaking was obviously low because of the increasing of its concentration. Its volumetric anti-shrink efficiency reached the biggest (93.26%) at the concentration of 20%. Percentage of shrinkage of adding was higher than soaking. Volumetric anti-shrink efficiency could only reach to 58.91%, so particleboard’s volumetric anti-shrink efficiency was better by soaked, it could keep the dimension more stable. On the other hand, at the conditions of 40℃, RH75% and 90%, the percentage of swelling was low while increasing concentration by the way of soaking, and the volumetric anti-swelling efficiency was higher than by additing. The higher concentration of polyethylene glycol, the lower percentage of moisture absorption, moisture-excluding efficiency of soaking was higher than additing. It revealed that soaking had the better efficiency of stability. Forejudging this kind of particleboard will decrease the moisture absorption, maybe the particles were covered by polyethylene glycol, as a protective layer. And owing to its moisture absorption ability was stronger than woods, so moisture was hard to combine with hydroxyl groups of wood. As for moisture-excluding efficiency, it was not so obviously by additing than by soaking, but the strength was higher than by soaking.Therefore,consider the treatment operation of these two methods, it could have less time to make the
boards and saved the cost by adding.
By through modifying particleboard with PEG, although the mechanical properties were lower than normal particleboard, but the dimensional stability was inreased. If they are used for non-construction,treating with PEG may be a feasible treatment method.
I、前言..........................1
(I)研究動機與目的.....................1
(II)研究流程....................... 4
II、文獻回顧.......................6
(I)木質材料之重要性....................6
(II)粒片板之定義及發展史................ 7
一、粒片板之定義....................7
二、粒片板發展史....................7
(一)歷史背景..................... 7
(二)發展史...................... 8
三、粒片板的性質................... 11
(III)木材改良..................... 12
一、尺寸安定化的表示法................ 13
二、尺寸安定化的方法................. 14
(一)實木類......................14
1.物理法......................14
2.化學法......................16
(二)木材粒片複合板..................19
(IV)聚乙二醇之介紹................... 23
一、何謂聚乙二醇................... 23
二、聚乙二醇的作用.................. 24
三、聚乙二醇的處理方法................ 26
(一)PEG溶液之調配..................26
(二)PEG處理槽....................27
(三)聚乙二醇處理材於戶外使用.............28
III、試驗材料與方法...................29
(I)試驗材料備製.................... 29
(II)試驗方法......................30
ㄧ、粒片板製造及條件................. 31
二、粒片基本性質測定................. 32
三、粒片板性質試驗.................. 33
(一)物理性質測試...................35
(二)機械性質測試...................38
(三)尺寸安定性測試..................40
IV、結果與討論..................... 43
(I)粒片之基本性質...................43
(II)粒片板之性質................... 46
ㄧ、粒片板之物理性質.................46
二、粒片板之機械性質................ 49
三、尺寸安定性試驗..................53
V、結論......................... 73
VI、參考文獻...................... 76
圖目錄
圖1 粒片浸漬聚乙二醇粒片板之試驗流程圖
Fig.1 Flow chart diagram of soaked polyethylene glycol particleboard.. 4

圖2 膠合劑添加聚乙二醇粒片板之試驗流程圖
Fig. 2 Flow chart of additive polyethylene glycol particleboard..... 5

圖3 人類對木材需要性之演變趨勢
Fig.3 Evolution of mankind to timber needs.............7

圖4 細胞壁膨潤試驗。以20wt.%PEG 200注入歐洲赤松(Pinus sylvestris)
Fig.4 An example of cell wall swelling. Swedish Pine(Pinus sylvestris)
impregnated with 20 w/o PEG 200.............. 26

圖5物理機械性質試片之取樣方式
Fig.5 Testing samples of physical and mechanical properties......34

圖6測試密度之試材尺寸及位置
Fig. 6 Testing wood dimension and position for testing density.....35

圖7內聚強度之測試圖
Fig.7 Testing diagram of internal bond strength...........39

圖8抗彎強度之裝置圖
Fig. 8 Bending strength test settings............... 40

圖9 放射松粒片、聚乙二醇藥劑及浸漬20%PEG粒片之FTIR光譜圖
Fig. 9 FTIR spectrogram of radiate pine particle, polyethylene glycol and
soaked 20% PEG particle.................45


圖10 對照組與不同濃度聚乙二醇處理粒片之FTIR光譜圖
Fig. 10 FTIR spectrogram of control and treated with different concentration polyethylene glycol...................46

圖11 甲醛濃度之檢量線
Fig.11 Standard line of formaldehyde content............49

圖12 不同處理方式及各種聚乙二醇濃度和體積抗收縮效能之相關性
Fig.12 Relationship between different treatments, various concentration polyethylene glycol and volumetric anti-shrink efficiency ... 55

圖13 對照組與浸漬不同濃度聚乙二醇粒片板於40℃、RH75%下之經
時體積膨脹率
Fig.13 Coefficient of volumetric swelling of control and soaked in different concentration polyethylene glycol particleboard under 40℃, RH75%
...........................56

圖14 對照組與添加不同濃度聚乙二醇粒片板於40℃、RH75%下之經
時體積膨脹率
Fig.14 Coefficient of volumetric swelling of control and added in different
concentration polyethylene glycol particleboard under 40℃, RH75%
...........................57

圖15 對照組與浸漬不同濃度聚乙二醇粒片板於40℃、RH90%下之經
時體積膨脹率
Fig.15 Coefficient of volumetric swelling of control and soaked in different concentration polyethylene glycol particleboard under 40℃, RH90%
...........................57

圖16 對照組與添加不同濃度聚乙二醇粒片板於40℃、RH90%下之經
時體積膨脹率

Fig.16 Coefficient of volumetric swelling of control and added in different
concentration polyethylene glycol particleboard under 40℃, RH90%
...........................58

圖17 聚乙二醇濃度與40℃ RH75%及90%體積抗膨脹效能之相關性
Fig.17 Relationship between concentration polyethylene glyco and volumetric anti-swelling efficiency under 40℃, RH75% and 90%.........................63

圖18 對照組與浸漬不同濃度聚乙二醇粒片板於40℃、RH75%下之經
時吸濕率
Fig.18 Percentage of moisture absorption of control and soaked different
concentration polyethylene glycol particleboard under 40℃, RH75%
...........................65

圖19 對照組與添加不同濃度聚乙二醇粒片板於40℃、RH75%下之經
時吸濕率
Fig.19 Percentage of moisture absorption of control and added different
concentration polyethylene glycol particleboard under 40℃, RH75%
...........................66

圖20 對照組與浸漬不同濃度聚乙二醇粒片板於40℃、RH90%下之經
時吸濕率
Fig.20 Percentage of moisture absorption of control and soaked different
concentration polyethylene glycol particleboard under 40℃, RH90%
........................... 66

圖21 對照組與添加不同濃度聚乙二醇粒片板於40℃、RH90%下之經
時吸濕率
Fig.21 Percentage of moisture absorption of control and added different
concentration polyethylene glycol particleboard under 40℃, RH90%
...........................67
圖22 聚乙二醇濃度與40℃、RH 75%及90%下抗吸濕率之相關性
Fig.22 Relationship between polyethylene glycol concentration and
moisture-excluding efficiency under 40℃, RH 75% and 90%.. 71

表目錄
表1 不同分子量聚乙二醇之性質
Table 1 Properties of different molecular weight polyethylene glycol ..24

表2 放射松粒片之基本性質及處理後之重量增加率
Table 2 Basical property of radiata pine particle and weight percent
gain after treatment ..................44

表3 各種條件粒片板之物理性質
Table 3 Physical properties of various conditional particleboard ....47

表4 各種條件粒片板釋出之游離甲醛濃度
Table 4 Released free formaldehyde concentration of various conditional
Particleboard.....................48

表5 各種條件粒片板之機械性質
Table 5 Mechanical properties of various conditional particleboard ...51

表6 各種條件粒片板之體積抗收縮效能
Table 6 Volumetric anti-shrink efficiency of various conditional particleboard.....................54

表7各種條件粒片板於40℃、RH75%下之體積抗膨脹效能
Table 7 Volumetric anti-swelling efficiency of various conditional particleboard under 40℃, RH75%.............60

表8各種條件粒片板於40℃、RH90%下之體積抗膨脹效能
Table 8 Volumetric anti-swelling efficiency of various conditional particleboard under 40℃, RH90%.............61


表9各種條件粒片板於40℃、RH75%下之抗吸濕率
Table 9 Moisture-excluding efficiency of various conditional particleboard
under 40℃, RH 75%..................68

表10各種條件粒片板於40℃、RH90%下之抗吸濕率
Table 10 Moisture-excluding efficiency of various conditional particleboard
under 40℃, RH90%..................69
1.中國國家標準(1999) CNS 2215、CNS6715、CNS459粒片板檢驗法。經濟部中央標準局。
2.王松永(1987) 粒片板研究與利用之趨勢。林產工業叢書,粒片板加工技術與利用。中華林產事業協會,pp.24~32。
3.王義仲(2002) 聚乙二醇處理材之收縮性能之探討。華崗農科學報, 9:21 ~35。
4.李堅(1990) 木質材料的界面特性與無膠膠合技術。東北林業大學出版社,pp.16~71。
5.李文昭、劉正字、賴明志(2005) 苯甲基化木材粒片熱融自膠合製造粒片板(I)。林產工業,24(2):161~170。
6.李文昭、劉正字、羅紹宏(2005) 木材溴丙烯化學改質及其自膠合性。林業研究季刊,27(1):43~52。
7.呂建霖(2005) 水泥及石膏結合木炭粒片複合材之研究,國立中興大學森林學研究所碩士論文。
8.林仁政(1997) 熱處理改良木材尺寸安定性之研究。國立中興大學森林學研究所碩士論文,pp.22~111。
9.林正榮、彭淑貞、張正璇、吳英信、郭千茹(2002) 熱壓溫度與時間對合板膠合層形態與性態之影響。林產工業 21(1):25~30。
10.林東陽(1974) 聚乙二醇(PEG)安定木材之原理和技術。木材產銷月刊
6(7):14~21。
11.唐讓雷(1987) 提高粒片板價值之問題與發展。林產工業叢書,粒片板加工技術與利用。中華林產事業協會,pp.19~23。
12.徐俊雄(1999) 石膏結合農林廢料複合材之研究,國立中興大學森林學研究所碩士論文。
13.陳載永(1999) 永續經營原則下之木材利用。跨世紀林業及林產工業永續經營與發展研討會論文集。中華林產事業協會,pp. 22~23。
14.陳恬恬(2005) 混合廢棄放射松樹皮對其粒片板性質影響之研究,國立嘉義大學林業暨自然資源研究所碩士論文。
15.黃世勛(1982) 粒片板翹曲及其防止之研究,國立中興大學森林學研究所碩士論文。
16.彭嘉文(1999) 農林廢料對水泥結合性質之影響及木炭-杉木粒片水泥板之性質,國立中興大學森林學研究所碩士論文。
17.張惠婷、張上鎮、蔡幸娟(2000) 酯化處理杉木之吸溼性與尺寸安定性。中華林學季刊,33(3):383~390。
18.張惠婷、張上鎮(2002) 醯化處理對杉木抗吸溼效能之影響。中華林學季刊,35(3):299~307。
19.楊敏娟、吳定新(1987) 林產學概論。台灣商務印書館,pp.86~101。
20.鄒哲宗、夏滄琪(2001) 世界木材供應現況及未來木材市場之探討。林業研究專訊42期。
21.廖國宏(1993) 利用飲料包裝紙之廢料製造粒片板之研究,國立中興大學森林學研究所碩士論文。
22.劉一星、李海朝(2005) 木質廢棄物再生循環利用技術。化學工業出版社。材料科學與工程出版中心,pp.1~13;pp.116~134。
23.劉正字(1999) 木材尺寸安定化的方法。木質建材,2:47~50。
24.劉正字、李文昭、夏以淳(2000a) 木材之化學改質及其膠合性之研究(III)。林產工業,19(2):229~240。
25.劉正字、李文昭、夏以淳(2000b) 木材之化學改質及其膠合性之研究(IV)。 林業研究季刊,22(3):27~36。
26.劉相識、廖坤福、彭秀鳳(1994) 乙醯化木材之機械性質研究。林產工業,13(1):53~66。
27.盧繼承(1973) 繼續擴張中的歐洲合板及粒片板。台灣木材工業 26:24~27。
28.賴振東(1980) 聚乙二醇對木材尺寸安定性與塗裝面耐久性的改善效應之研究,國立台灣大學森林學研究所林產組碩士論文。
29.薛朝印(2001) 木材纖維-低密度聚乙烯複合材和稻殼-低密度聚乙烯複合材之研究,國立中興大學森林學研究所碩士論文。
30.羅夢彬(1974) PEG處理木材之方法。台灣木材工業,31:3~9。
31.羅玉婷、王松永(1994) 蔗渣與木材刨花混合粒片板之研製(一)。中華林學季刊,27(2):125~146。
32.嚴永晃(1974) 聚乙烯二醇在木材加工上之應用。木材產銷月刊,6(5):13~16。
33.鈴木正治、德田迪夫、作野友康(1999) Wood SCIENCE SERIES,pp. 13 ~72。
34.喜多山繁、黑須博司、太田正英(1991) 木材の加工。海青社,
pp.145~160。
35.Centin, N.S. and N. Ozmen(2001) Dimensional changes in Corsican and
Scots pine sapwood due to reaction with crotonic anhydride, Wood
Science and Technology, 35:257~267.
36.English, B. and R. Falk(1997) Factor that Affect the Application of
Woodfiber-Plastic Composites, Woodfiber-plastic Composites,
pp.189~194.
37.Engonga, P.E.E., R. Schneider, P. Gerardin and B. Loubinoux
(2000) Preparation and dimensional stability of wood grafted with alkyl chains, Holz als Roh- und Werkstoff, 58:284~286.
38.Felton, Colin.C. and Rodney. C. De Groot(1996) The recycling potential
of preservative-treated wood, Forest Prod.J., 46(7/8):37~46.
39.Hill, C.A.S. and D. Jones (1996) The Dimensional Stabilisation of Corsican Pine Sapwood by Reaction with Carboxylic Acid Anhydrides-The Effect of Chain Length, Holzforschung, 50:457~462.
40.Hill, C.A.S. and D. Jones (1999) Dimensional Changes in Corsican Pine Sapwood due to Chemical Modificatuon with Linear Chain Anhydrides, Holzforschung, 53:267~271.
41.Hill, C.A.S. and N.S. Cetin (2000) Surface activation of wood for graft polymerization, International Journal of Adhesion&Adhesives, 20:71~76.
42.Järvela, P.K., O. Tervala and P.A. Järvela (1999) Coating plywood with a thermoplastic, International Journal of Adhesion&Adhesives, 19:295~301.
43.Lempfer, K., T. Hilbert and H. Gunzerodt (1990)Development of gypsum-bonded particleboard manufacture in Europe, Forest Prod.J.,40(6):37~40.
44.Leslie C.(1973) “PEG of the Wood worker’s Heart” Reaction from Man Society Technology, Journal of Industrial Arts Education, 33(1):13~16.
45.Maloney T. M. (1977) Modern Particboard & Dry-Process Fiberboard Manufacturing. pp.520~523,620~622.
46.McLaughlan J. (1988) Cement-bonded particleboard from radiata pine, Composite Wood Products, pp.111~119.
47.Miller,D.P.and A.A.Moslemi (1991)Wood-cement composites:species
and heartwood-sapwood effects hydration and tensile trength.
For.Prod.J.,41(3):9~14.
48.Moslemi, A. A. and Y. T. Lim (1984) Compatibility of southern hardwoods with Portland cement, Forest Prod. J., 34(7/8):22~26.
49.Ohkoshi M. (1990) Bonding of wood by Thermoplasticizing the
Surfaces I. Effects of allylation and hot-press conditions, Mokuzai Gakkaishi, 36(1):57~63.
50.Ohkoshi M. (1991) Bonding of wood by Thermoplasticizing the
Surfaces II. Possible crosslinking of wood by the graft-copolymerizing
Of styrene onto allylated surfaces, Mokuzai Gakkaishi, 37(10):917~923.
51.Ohkoshi, M., N. Hayashi and M. Ishihara (1992) Bonding of wood by
Thermoplasticizing the Surfaces III. Mechanism of thermoplasticization
of wood by allklation, Mokuzai Gakkaishi, 38(9):854~861.
52.Papadopoulos, A.N. and E. Traboulay (2002) Dimensional stability
of OSB made from acetylated Fir strands, Holz als Roh- und Werkstoff, 60:84~87.
53. Papadopoulos, A.N. and A. Gkaraveli (2003) Dimensional stability and strength of particleboard by chemical modification with propionic anhydride, Holz als Roh- und Werkstoff, 61:142~144.
54.Stensorud, R.K. and J.W. Nelson (1965) The Improvement of Overlays to Forest Products Industry, F. P. J., 15(5):203~205.
55.Sander, C., E.P.J. Beckers, H. Militz and W. van Veenendaal (2003) Analysis of acetylated wood by electron microscopy, Wood Sci. Technol., 37:39~46.
56.Tuovinen, J. P. and G. Bolotowsky (1980) Overlayment:Upgrading Process for Particleboard, World wood, 2:14~16.
57.WallstrÖm, L. and K.A.H. Lindberg (1995) Wood surface stabilization with Polyethyleneglycol, PEG. Wood Science and Technology, 29(2):109~119.
58.WallstrÖm, L. and K.A.H. Lindberg (1999) Measurement of cell wall penetration in wood of water-based chemicals using SEM/EDS and STEM/EDS technique, Wood Science and Technology, 33:111~122.
59. Widyorini, R., J. Xu, T. Watanabe and S. Kawai (2005) Chemical changes in steam-pressed kenaf core binderless particleboard, J. Wood Sci., 51:26~32.
60. Xu, J., G. Han, E.D. Wong and S. Kawai (2003) Development of binderless particleboard from kenaf core using steam-injection pressing, J Wood Sci., 49:327~332.
61. Xu, J., R. Sugawara, R. Widyorini, G. Han and S. Kawai (2004)
Manufacture and properties of low-density binderless particleboard from kenaf core, J. Wood Sci., 50:62~67.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top