跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 19:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柳沢誠
論文名稱:ProductionandphysiologicalcharacteristicsoftransgenicricesimultaneouslyoverexpressingPEPcarboxylase,pyruvate,PidikinaseandNADP-malicenzyme
指導教授:古森本
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:農業生物技術研究所
學門:農業科學學門
學類:農業技術學類
論文種類:學術論文
畢業學年度:95
語文別:中文
中文關鍵詞:PEP carboxylasepyruvateNADP-malic enzymePi dikinase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:232
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
Relative to C3 plants (e.g. rice, wheat, and potato), C4 plants (e.g. maize, sorghum, and sugarcane) have several agronomic advantages, such as high CO2 assimilation rate, low photorespiration rate, and high nitrogen and water use efficiency. In order to improve the growth and yield of rice, attempt has been made to install a functional C4 pathway into rice by overexpressing several key C4 photosynthesis enzymes via molecular genetic engineering. Three genes encoding C4 photosynthesis enzymes have been previously introduced into rice independently: maize phosphoenolpyruvate (PEPC), maize pyruvate, orthophosphate dikinase (PPDK) and rice NADP dependent malic enzyme (NADP-ME). To achieve a functional C4 pathway, it is necessary to simultaneously express these enzymes in the same rice plant. The major goal of my research was to integrate these transgenes into the same rice plant for further study. The homozygous PEPC/PPDK or CK transgenic rice plant overexpressing these two maize C4 photosynthesis enzymes was cross-hybridized with homozygous ME transgenic rice plant to obtain a three-way hybrid (PEPC/PPDK/NADP-ME or CKM). Homozygous CKM lines that overexpress these three enzymes were screened for further molecular and physiological characterization. Integration of these genes into rice genome was confirmed by Southern blot analysis. Expression levels of these three genes in various transgenic rice plants were determined by RT-PCR, northern blot analysis, western immunoblot analysis and enzyme activity assay. Photosynthetic physiological measurements were performed to assess the effects of overexpressing one, two, or three of these C4 photosynthesis enzymes in transgenic rice plants. The results show that these transgenic rice plants have comparable or high photosynthetic rates under different environmental conditions compared to the non-transgenic wild type plants. The higher photosynthetic capacity may be related to higher stomatal conductance to CO2 and enhanced tolerance to photoinhibition. The higher photosynthetic capacity of these transgenic rice plants may be related to a higher stomatal conductance to CO2 and an enhanced tolerance to photoinhibition.
Acknowledgements...........................................................................................Ⅰ
Abstract.............................................................................................................Ⅱ
List of figures....................................................................................................Ⅵ
List of tables......................................................................................................Ⅷ

Ⅰ. Introduction..……………………………………………………………............ 1
1. Overexpression of PEPC......................................................................... 6
2. Overexpression of PPDK..........................................................................9
3. Overexpression of NADP-MDH..............................................................10
4. Overexpression of NADP-ME.................................................................11
5. Overexpression of PCK...........................................................................12
6. Overexpression of multiple C4 genes......................................................13

Ⅱ Materials and methods
1. Plant material and growth condition.....................................................17
2. Cross-hybridization.................................................................................17
3. Pollen viability assay...............................................................................18
4. Enzyme activity assay.............................................................................18
5. Isolation of genomic DNA for PCR.........................................................19
6. PCR conditions........................................................................................20
7. Isolation of genomic DNA for Southern blot analysis............................21
8. Southern blot analysis............................................................................22
9. Total RNA extraction...............................................................................23
10. Synthesis of first-strand cDNA and RT-PCR.......................................23
11. Northern blot analysis..........................................................................24
12. Western immunoblot analysis..............................................................25
13. Gas exchange measurements...............................................................25
14. Photo-oxidative stress response...........................................................26

Ⅲ. Results
1. Cross-hybridization.................................................................................28
2. Initial screening of F1 hybrids by enzyme activity assay......................29
3. Screening of homozygous CKM transgenic lines...................................30
4. Confirmation of homozygousity in F3 generation by PCR....................32
5. Southern blot analysis............................................................................36
6. RNA expression analysis.........................................................................40
7. Protein expression analysis....................................................................43
8. Gas exchange experiment.......................................................................47
9. Photo-oxidative stress response..............................................................57
10. δ13C analysis........................................................................................60

Ⅳ. Discussion
1. Integration and expression of C4 genes in transgenic rice plants.......63
2. Photosynthetic performance..................................................................65
3. Tolerance to photoinhibition..................................................................67
4. Photosynthetic discrimination against 13C...........................................69

Ⅴ. Conclusions..................................................................................................71

Ⅵ. References...................................................................................................72




















List of figures

Figure 1. Initial screening of homozygous CKM lines by enzyme activity assay.......................31

Figure 2. Screening of homozygous NADP-ME lines from the F3 progeny of
CKM line 18 by PCR...........................................................................................33

Figure 3. Screening of homozygous NADP-ME lines from the F3 progeny of
CKM line 34 by PCR...........................................................................................34

Figure 4. Screening of homozygous PPDK lines from the F3 progeny of
CKM line 18 by PCR...........................................................................................35

Figure 5. Screening of homozygous PPDK lines from the F3 progeny of
CKM line 34 by PCR...........................................................................................37

Figure 6. Screening of homozygous PPDK lines from the F4 progeny of
CKM line 34-10 by PCR......................................................................................38

Figure 7. Southern blot analysis of expression of three C4 transgenes
in various transgenic and wild type rice plants................................................39

Figure 8. RT-PCR analysis of expression of three C4 transgenes
in various transgenic and wild type rice plants................................................41

Figure 9. Northern blot analysis of expression of three C4 transgenes
in various transgenic and wild type rice plants................................................42

Figure 10. Western blot analysis of expression of three C4 transgenes
in various transgenic rice, wild type rice and maize plants............................44

Figure 11. Enzyme activities of PEP carboxylase, Pyruvate, Pi dikinase,
and NADP-malic enzyme in various transgenic rice, wild type rice
and maize plants...............................................................................................46


Figure 12. Photosynthetic responses to temperature of CKM transgenic rice
line 18-8, wild type rice and maize plants.......................................................48

Figure 13. Photosynthetic responses to CO2 of various transgenic rice,
wild type rice and maize plants.......................................................................49

Figure 14. Photosynthetic responses to light of various transgenic rice,
wild type rice and maize plants.......................................................................52

Figure 15. Stomatal conductance and intercellular CO2 concentration
as a function of external CO2 concentration in various
transgenic rice, wild type rice and maize plants............................................55

Figure 16. Stomatal conductance and intercellular CO2 concentration
as a function of light in various transgenic rice, wild type rice
and maize plants...............................................................................................56

Figure 17. Fv/Fm before and after and % inhibition in Fv/Fm after
methyl viologen and high light treatments in leaves of
various transgenic and wild type rice plants...................................................58

Figure 18. NPQ before and after and % inhibition of NPQ after
methyl viologen and high light treatments in leaves of
various transgenic and wild type rice plants...................................................59











List of tables

Table 1. Carboxylation efficiency, CO2 compensation point and apparent
quantum yield of various transgenic rice, wild type rice
and maize plants..................................................................................................54

Table 2. Photosynthesis rates of various transgenic and wild type rice measured at 30℃, 375 μl/l CO2 and 1000 μmol/m2/s....................................................................................61

Table 3. Leaf δ13C contents for various transgenic rice, wild type rice and
maize plants..........................................................................................................62
Agarie, S., Miura, A., Sumikura, R., Tsukamoto, S., Nose, A., Arima, S., Matsuoka, M and Miyao-Tokutomi, M. (2002). Overexpression of C4 PEPC caused O2-insensitive photosynthesis in transgenic rice plants. Plant Sci. 162, 257-265.

Akhani, H., Barroca, J., Koteeva, N., Voznesenskaya, E., Franceschi, V., Edwards, G., Ghaffari, S. M. and Ziegler H. (2005). Bienertia sinuspersici (Chenopodiaceae): A new species from southwest Asia and discovery of a third terrestrial C4 plant without Kranz anatomy. Systematic Bot. 30, 290-301.

Asai, N. Nakajima, N., Tamakoki, M., Kamada, M. and Kondo, N. (2000). Role of malate synthesis mediated by phosphoenolpyruvate carboxylase in guard cell in the regulation of stomatal movement. Plant Cell Physiol 41, 10-15.

Bowes, G. and Salvucci, M. E. (1989). Plasticity in the photosynthetic carbon metabolism of submersed aquatic macrophytes. Aquat. Bot. 34, 233-266.

Casati, P., Drincovich, M. F., Edwards, G. E. and Andreo, C. S. (1999). Malate metabolism by NADP-malic enzyme in plant defense. Photosynthesis Res. 61, 99-105.

Cehlen, J., Panstruga, R., Smets, H., Merkelbach, S., Kleines, M., Porsch, P., Fladung, M., Becker, I., Rademacher, T., Hausler, R. E., Hirsch, H. (1996). Effects of altered phosphoenolpyruvate carboxylase activities on transgenic C3 plant Solanum tuberosum. Plant Mol. Biol. 32, 831-848.

Chao, Y. C., Wood, H. A., Chang, C. Y., Lee H. J., Shen, W. C. and Lee, H. T. (1992). Differential expression of Hz-1 baculovirus genes during productive and persistent viral infections. Journal of Virol. 66, 1442-1448.

Chen, L., Li, K., Miwa, T., Izui, K. (2004). Overexpression of a cyanobactrerial phosphoenolpyruvate carboxylase with diminished sensitivity to feedback inhibition in Arabidopsis changes amino acid metabolism. Planta 219, 440-449.

Chen, P. W., Chiang, C. M., Tseng, T. H. and Yu, S. M. (2006). Interaction between rice MYBGA and the gibberellin response element controls tissue-specific sugar sensitivity of α-amylase genes. Plant Cell 18, 2326-2340.

Chi W., Yang, J., Wu, N. and Zhang, F. (2004). Four rice genes encoding NADP malic enzyme exhibit distinct expression profiles. Biosci. Biotechnol. Biochem. 68, 1865-1874.

Dai, Z., Ku, M. S. B., Zhang, D. and Edwards, G. E. (1994). Effects of growth regulators on the induction of Crassulacean acid metabolism in the facultative halophyte Mesembryaanthemum crystallinum L. Planta 192, 287-294.

Drincovich, M. F., Casati, P., Andreo, C. S., Chessin, S. J., Franceschi, V. R., Edwards, G. E. and Ku, M. S. B. (1998). Evolution of C4 photosynthesis in Flaveria species. Plant Physiol 117, 733-744.

Edwards, G. E., Nakamoto, H., Burnell, J. N. and Hatch, M. D. (1985). Pyruvate, Pi dikinase and NADP-malate dehydrogenase in C4 photosynthesis: properties and mechanism of light/dark regulation. Ann. Rev. Plant Physiol. 36, 255-286.

Edwards, G. and Walker, D. (1983). C3, C4: mechanisms, and cellular and environmental regulation, of photosynthesis. Black well Scientific Publications, Oxford, London.

Fukayama, H., Imanari E., Tsuchida H., Izui, K., Matsuoka, M. (2000). In vivo activity of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Plant Cell Physiol. 41, s112.

Fukayama, H., Hatch, M. D., Tamai, T., Tsuchida, H., Sudoh, S., Furbank, R. T. and Miyao, M. (2003). Activity regulation and physiological impacts of maize C4-specific phosphoenolpyruvate carboxylase overproduced in transgenic rice plants. Photosynthesis Res. 77, 227-239.

Fukayama, H., Tsuchida, H., Agarie, S., Nomura, M., Onodera, H., Ono, K., Lee, B., Hirose, S., Toki, S., Ku, M. S. B., Makino, A., Matsuoka, M., Miyao, M. (2001). Significant accumulation of C4-specific pyruvate, orthophosphate dikinase in a C3 plant, rice. Plant physiol. 127, 1136-1146.

Freitag, H. and Stichler, W. (2000). A remarkable new leaf type with unusual photosynthetic tissue in a central Asiatic genus of Chenopodiacea. Plant Biol. 2, 154-160.

Fushimi,T., Umeda,M., Shimazaki,T., Kato,A., Toriyama,K. and Uchimiya,H. (1994). Nucleotide sequence of a rice cDNA similar to a maize NADP-dependent malic enzyme. Plant Mol. Biol. 24, 965-967.

Gallardo, F., Miginiac-Mslow, M., Sangwan, R. S., Decottingnies, P., Keryer, E., Dubois, F., Bismuth, E., Galvez, S., Sangwan-Norreel, B., Gadal, P., Cretin, C. (1995). Monocotyledonous C4 NADP+-malate dehydrogenase is efficiently synthesized, targeted to chloroplasts and processed to an active form in transgenic plants of the C3 dicotyledon tobacco. Planta 197, 324-332.

Genty, B., Briantais, J. & Baker, N. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophy. Acta 990, 87–92.

Gerrard-Wheeler, M. C., Tronconi, M. A., Drincovich, M. F., Andreo, C. S., Flϋgge, U-I. and Maurino, V. G. (2005). A comprehensive analysis of the NADP-malic enzyme gene family of Arabidopsis. Plant Physiol. 139, 39-51.

Hatch, M. D. (1987). C4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. Biochim. Biophys. Acta 895, 81-106.

Hatch, M. D. and Slack, C. (1975). R. Pyruvate, Pi dikinase from leaves. Meth. Enzymol. 42, 212-219.

Häusler, R. E., Hirsch, H., Kreuzaler, F., Peterhansel, C. (2002). Overexpression of C4-cycle enzymes in transgenic C3 plants: a biotechnological approach to improve C3-photosynthesis. J. Exp. Bot. 53, 591-607.

Häusler, R. E., Kleines, M., Uhrig, H., Hirsch, H.-J. and Smets, H. (1999). Overexpression of phosphoenolpyruvate carboxylase from Corynebacterium glutamicum lowers the CO2 compensation point (Г*) and enhances dark and light respiration in transgenic potato. J. Exp. Bot. 50, 1231-1242.

Häusler, R. E., Rademacher, T., Li, J., Lipka, V., Fischer, L. K., Schubert, S., Kreuzaler, F. and Hirsch, H. (2001). Single and double overexpression of C4-cycle genes had differential effects on the pattern of endogenous enzymes, attenuation of photorespiration and on contents of UV protectants in transgenic potato and tobacco plants. J. Exp. Bot. 52, 1785-1803.

Hudspeth, R. L., Grula, J. W., Dai, Z., Edwards,G. E., Ku, M. S. B. (1992). Expression of maize phosphoenolpyruvate carboxylase in transgenic tobacco. Plant Physiol. 98, 458-464.

Imaizumi, N., Ku, M. S. B., Ishihara, K., Samejima, M., Kaneko, S. and Matsuoka, M. (1997). Characterization of the gene for pyruvate,orthophosphate dikinase from rice, a C3 plant, and a comparison of structure and expression between C3 and C4 genes for this protein. Plant Mol. Biol. 34, 701-716.

Ishimaru, K., Ichikawa, H., Matsuoka, M., Ohsugi, R. (1997). Analysis of a C4 maize pyruvate, orthophosphate dikinase expressed in C3 transgenic Arabidopsis plants. Plant Sci. 129, 57-64.

Ishmaru, K., Ohkawa, Y., Ishige, T., Tobias, D. J., Ohsugi, R. (1998). Elevated pyruvate, orthophosphate dikinase(PPDK) activity alters carbon metabolism in C3 transgenic potatoes with a C4 maize PPDK gene. Physiol. Plant. 103, 340-346.

Jiao, D., Huang, X., Li, X., Chi, W., Kuang, T., Zhang, Q., Ku, M.S. B., Cho, D. (2002). Photosynthetic characteristics and tolerance to photo-oxidation of transgenic rice expressing C4 photosynthesis enzymes. Photosynthesis Res. 72, 85-93.

Khatun, S. and Flowers, T. J. (1995). The estimation of pollen viability in rice. J. Exp. Bot. 46, 151-154.

Ku, M. S. B., Agarie, S., Nomura, M., Fukayama, H., Tsuchida, H., Ono, K., Hirose, S., Toki, S., Miyao, M., Matsuoka, M. (1999). High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nature Biotech. 17. 76-80.

Ku, M. S. B., Cho, D., Li, X., Jiao, D. M., Pinto, M., Miyao, M. and Matsuoka, M. (2001). Introduction of genes encoding C4 photosynthesis enzymes into rice plants: physiological consequences. In: Rice Biotechnology: Improving Yield, Stress Tolerance and Grain Quality. Novaritis Foundation, 236, 100-116. Chichester.

Ku, M. S. B., Cho, D., Ranade, U., Hsu, T. P., Li, X., Jiao, D. M., Eheringer, J., Miyao, M., and Matsuoka, M. (2000). Photosynthetic performance of transgenic rice plants overexpressiing maize C4 photosynthesis enzymes. In: Redesign Rice Photosynthesis to Increase Yield. ed., Sheehy, J. IRRI 193-204, Amsterdam/Oxford.

Ku, M. S. B., Kano-Murakami, Y. and Matsuoka, M. (1996). Evolution and expression of C4 photosynthesis genes. Plant Physiol. 111, 949-957.

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.

Lai, L. B., Tausta, L. and Nelson, T. M. (2002a). Differential regulation of transcripts encoding cytosolic NADP-malic enzyme in C3 and C4 Flaveria species. Plant Physiol. 128, 140-149.

Lai, L. B., Wang, L. and Nelson, T. M. (2002b). Distinct but conserved functions for two chloroplastic NADP-malic enzyme isoforms in C3 and C4 Flaveria sepecies. Plant Physiol. 128, 125-139.

Lara, M. V., Drincovich, M. F., Mϋllar, G. L., Murino, V. G. and Andreo, C. S. (2005). NADP-malic enzyme and Hsp70: Co-purification of both proteins and modification of NADP-malic enzyme properties by association with Hsp70. Plant Cell Physiol. 46, 997-1006.

Lipka, V., Häusler, R. E., Rademacher, T., Li, J., Hirsch, H-J., Kreuzaler F. (1999). Solanum tuberosum double transgenic expressing phosphoenolpyruvate carboxylase and NADP-malic enzyme display reduced electron requirement for CO2 fixation. Plant Sci. 144, 93-105.

Lin, C. F., Wei, C., Jiang, L. Z., Li, K. G., Qian, X. Y., Attia, K. and Yang, J. S. (2004). Isolation, characterization and expression analysis of a leaf-specific phosphoenolpyruvate carboxylase gene in Oryza sativa. DNA Seq. 15, 269-276.

Magnin, N. C., Cooley, B. A., Reiskind, J. B. and Bowes, J. (1997). Regulation and localization of key enzymes during the induction of Kranz-less, C4-type photosynthesis in Hydrilla verticillata. Plant Physiol. 115, 1681-1689.

Matsuoka, M., Fukayama, H., Tsuchida, M., Nomura, M., Agarie, S., Ku, M. S. B. and Miyao, M. (2000). How to express some C4 photosynthesis genes at high levels in rice. In: Redesign Rice Photosynthesis to Increase Yield, ed., Sheehy J, IRRI 193-204, Amsterdam/Oxford.

Matsuoka, M., Furbank, R. T., Fukayama, H., Miyao, M. (2001). Molecular engineering of C4 photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 297-314.

Matsuoka,M. and Minami,E. (1989). Complete structure of the gene for phosphoenolpyruvate carboxylase from maize. Eur. J. Biochem. 181, 593-598.

Matsuoka,M., Ozeki,Y., Yamamoto,N., Hirano,H., Kano-Murakami,Y. and Tanaka,Y. (1988). Primary structure of maize pyruvate, orthophosphate dikinase as deduced from cDNA sequence. J. Biol. Chem. 263, 11080-11083.

McElroy,D., Rothenberg,M. and Wu,R. (1990). Structural characterization of a rice actin gene. Plant Mol. Biol. 14, 163-171.

Miyao, M. (2003). Molecular evolution and genetic engineering of C4 photosynthetic enzymes. J. Exp. Bot. 54, 179-189.

Mϋller, P., Li, X. P. and Niyogi, K. K. (2001). Non-photochemical quenching. A response to excess light energy. Plant Physiol. 125, 1558-1566.

O’Leary, M. H. (1981). Carbon isotope fractionation in plants. Phytochem. 20, 553-567.

Paul, M. J. and Foyer, C. H. (2001). Sink regulation of photosynthesis. J. Exp. Bot. 52, 1383-1400.

Rademacher, T., Häusler, R. E., Hirsh, H.-J., Zhang, L., Lipka, V., Weier, D., Kreuzaler, F. and Peterhänsel, C. (2002). An engineered phosphoenolpyruvate carboxylase redirects carbon and nitrogen flow in transgenic potato plants. Plant J. 32, 25-39.

Raines, C. A. (2006). Transgenic approaches to manipulate the environmental responses of the C3 carbon fixation cycle. Plant Cell and Environment, 29, 331-339.

Reiskind, J. B., Berg, R. H., Slvucci, M. E. and Bowes, G. (1989). Immunogold localization of primary carboxylases in leaves of aquatic and a C3-C4 intermediate species. Plant Sci. 61, 43-52.

Rotman B., Papermaster B. (1966). Membrane properties of living mamalian cells as studied by enzymatic hydrolysis of fluorogenic esters. Proc. Natl. Acad. Sci. USA. 55, 134-141.

Sage, R. F. (2004). The evolution of C4 photosynthesis. New Phytologist 161, 341-370.

Sambrook, J., Fritsch, E.F. & Maniatis, T.; Hrsg. (1989). Molecular Cloning - A Laboratory Manual, 2nd Ed. Cold Spring Habour Laboratory Press, New York.

Sharkey, T. D. (1985). O2-insensitive photosynthesis in C3 plants. Plant Physiol. 78, 71-75.

Sheen, J. (1999). C4 gene expression. Ann. Rev. Plant Physiol. Plant Mol. Biol. 50, 187-217.

Sheriff, A., Meyer, H.., Riedel, E., Schmitt, J. M. and Lapka, C. (1998). The influence of plant pyruvate, orthophosphate dikinase on a C3 plant with respect to the intracellular location of the enzyme. Plant Sci. 136, 43-57.

Suzuki, S., Murai, N., Burnell, J. N., Arai, M. (2000). Changes in photosynthetic carbon flow in transgenic rice plants that express C4-type phosphoenolpyruvate carboxykinase from Urochloa panicoides. Plant physiol. 124, 163-172.

Suzuki, S., Murai, N., Kasaoka, K., Hiyoshi, T., Imaseki, H., Burnell, J. N. and Arai, M. (2006). Carbon metabolism in transgenic rice plants that express phosphoenolpyruvate carboxylase and/or phosphoenolpyruvate carboxykinase. Plant Sci. 170, 1010-1019.

Takeuchi, Y., Akagi, H., Kamasawa, N., Osumi, M. and Honda, H. (2000). Aberrant chloroplasts in transgenic rice plants expressing a high level of maize NADP-dependent malic enzyme. Planta 211, 265-274.

Tesfaye, M., Temple, S. J., Allan, D. L., Vance, C. P., Samac, D. A. (2001). Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant Physiol. 127, 1836-1844.

Tsuchida, H., Tamai, T., Fukayama, H., Agarie, S., Nomura, M., Onodera, H., Ono K., Nishizawa, Y., Lee, B., Hirose, S., Toki, S., Ku, M. S. B., Matsuoka, M., Miyao, M. (2001). High level expression of C4-specific NADP-malic enzyme in leaves and impairment of photoautotrophic growth in a C3 plant, rice. Plant Cell Physiol. 42, 138-145.

Voznesenskaya, E. V., Franceschi, V. R., Kiirats, O., Artyusheva, E. G., Freitag, H. and Edwards, G. E. (2002). Proof of C4 photosynthesis without Kranz anatomy in Bienertia cycloptera (Chenopodiaceae). Plant J. 31, 649-662.

Voznesenskaya, E. V., Franceschi, V. R., Kiirats, O., Freitag, H and Edwards, E. (2001). Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. Nature 414, 543-546.

Wang, C. S., Vodkin, L.O. (1994). Extraction of RNA from tissues containing high levels of procyanidins that bind RNA. Plant Mol. Biol. Rep. 132-145.

Chi, W., Zhou, J. S., Zhang, F. and Wu, N. H. (2002). Photosynthetic features of transgenic rice expressing sorghum C4 type NADP-ME. Acta Bot. Sinica 46, 873-882.

Wintermas, J. F. G. H. and Mots, A. D. (1965). Spectrophotometric characteristics of chlorophyll and their pheophytins in ethanol. Biochim. Biophys. Acta 109, 448-453.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文