跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/14 03:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何依蓉
研究生(外文):Yi-Jung Ho
論文名稱:分析eta2對ABA感應之生理特性及基因表達的差異
論文名稱(外文):Huey-wen Chuang
指導教授:莊慧文
指導教授(外文):Huey-wen Chuang
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:農業生物技術研究所
學門:農業科學學門
學類:農業技術學類
論文種類:學術論文
論文出版年:2004
畢業學年度:95
語文別:中文
論文頁數:71
中文關鍵詞:生長激素離層酸
外文關鍵詞:AuxinABAETA2cross-talk
相關次數:
  • 被引用被引用:0
  • 點閱點閱:311
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
生長激素Auxin合成於莖頂處,auxin經由莖幹運移到植物各部位,進而影響植物生長與分化,如植物的向性,節間生長,及體胚的發育。植物荷爾蒙離層酸(abscisic acid, ABA),在植物生長與發育中負擔與auxin不一樣的生理角色。其主要功能在參與種子的休眠性調節,及逆境生理的調節。迄今的研究結果發現,ubiquitin-mediated proteolysis pathway參與auxin及ABA的訊息傳遞途徑(Gray and Estelle, 2000; Lopez-Molina et al., 2003; Zhabg et al., 2005)。eta2是一對auxin感應降低的突變體,此突變體除auxin外,亦對ABA感應產生變化(Chuang et al., 2004)。為了解Auxin及ABA訊息傳遞途徑中的交互作用,本實驗分析eta2對ABA及ABA相關的生理反應。實驗結果發現,eta2除對ABA有hypersensitive的反應外,對鹽、乾旱、糖皆有異於野生型的反應。本試驗亦藉由檢測受ABA誘導的基因在eta2中之表達,以分析eta2對ABA及ABA相關訊息的感應。結果顯示,eta2的營養器官對ABA的感應並無增加。eta2突變體中,受乾旱、鹽及ABA誘導的訊息途徑受阻,由生理反應檢測及ABA誘導之基因表達結果顯示,ETA2可能調控乾旱及鹽之訊息傳遞途徑,此途徑是受ABA共同調控。
Plant hormone auxin is synthesized at the shoot apex and transported to other tissues by polar transport. Auxin involves in various plant developmental processes including tropism, stem elongation, and embryo development. Plant hormone ABA has different role from auxin in plant development. It primarily involves in regulation of seed dormancy and stress-related responses. Currently, ubiquitin-mediated proteolysis pathway plays a crucial role in molecular mechanism regarding the signal transduction pathway of auxin and ABA. eta2 is a mutant for auxin response. In addition to alter auxin response, this mutant also exhibits phenotype of ABA hypersensitivity. To gain more understanding in the relationship of auxin and ABA cross-talk, we analyze the ABA and ABA-related phenotypes of eta2. Our results indicate that eta2 exhibits hypersensitive responses to ABA, osmotic/salt stresses and sugar. Analysis of expression of ABA inducible genes in eta2 shows that in eta2, the expressions of ABA inducible genes were not up-regulated. However, expressions of ABA inducible genes involved in osmotic/salt stress were suppressed in eta2. Based on this result, we propose that ETA2 might play a positive role in the signaling pathway of osmotic/salt stress in ABA-dependent manner.
中文摘要--------------------------------------------------Ⅰ
英文摘要(Abstract)--------------------------------------Ⅱ
目 錄-----------------------------------------------------Ⅲ
圖 次-----------------------------------------------------Ⅴ
壹、 前人研究---------------------------------------- 1
貳、 實驗材料與方法--------------------------------- 14
參、 實驗結果--------------------------------------- 29
肆、 討論------------------------------------------- 47
伍、 參考文獻--------------------------------------- 49
Abe H., Urao T., Ito T., Seki M., Shinozaki K., and Yamaguchi-Shinozaki K. (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15: 63-78
Abe H., Yamaguchi-Shinozaki K., Urao T., Iwasaki T., and Shinozaki K. (1997) Role of MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9: 1859-1868
Addicott F., ed (1983) Abscisic acid (New York, NY, Praeger Publishers)
Allen G.J., Murata Y., Chu S.P., Nafisi M., and Schroeder J.I. (2002) Hypersensitivity of abscisic acid-induced cytosolic calcium increases in the Arabidopsis farnesyltransferase mutant era1-2. Plant Cell 14: 1649-1662
Artus N.N., Uemura M., Steponkus P.L., Gilmour S.J., Lin C., Thomashow M.F. (1996) Constitutive expression of the coldregulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proc. Natl. Acad. Sci. USA 93: 13404-13409
Bandurski R.S. (1980) Homeostatic control of concentrations of indole- 3-acetic acid. In F Skoog ed, Plant Growth Substances 1979. Springer -Verlag, Berlin, pp. 37-49
Bartel B. (1997) Auxin biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 48: 51-66

Bartel B., Leclere S., Magidin M., Zolman B.K. (2001) Inputs to the active indole-3-acetic pool: de nevo synthesis, conjugate hydrolysis and indole-3-butyric acid β-oxidation. J. Plant Growth Regul. 20: 198-216
Berleth T., Krogan N.T., and Scarpella E. (2004) Auxin signals-turning genes on and turning cells around. Curr. Opin. Plant Bio. 7: 553-563
Boggess S.F., Stewart C.R., Aspinall D., Paleg L. (1976) Effect of water stress on proline synthesis from radioactive precursors. Plant Physiol 58: 398-401
Bohnert H.J., Nelson D.E., and Jensen R.G. (1995) Adaptations to environmental stresses. Plant Cell 7: 1099-1111
Bonetta D., and Mccourt P. (1998) Genetic analysis of ABA signal transduction pathways. Trends plant Sci. 3(6):231-235
Bright J., Desikan R., Hancock J.T., Weir I.S., and Neill S.J. (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J. 45: 113-122
Brocard-Gifford I.M., Lynch T.J., and Finkelstein R.R. (2002) Regulation and Role of the Arabidopsis Abscisic Acid-Insensitive 5 Gene in Abscisic Acid, Sugar, and Stress Response. Plant Physiol. 129: 1533-1543
Brocard-Gifford I.M., Lynch T.J. & Finkelstein R.R. (2003) Regulatory networks in seeds integrating developmental, abscisic acid, sugar and light signalling. Plant Physiol. 131: 78-92

Brocard-Gifford I.M., Lynch T.J., Garcia M.E., Malhotra B., and Finkelstein R.R. (2004) The Arabidopsis thaliana ABSCISIC ACID-INSENSITIVE 8 locus encodes a novel protein mediating abscisic acid and sugar responses essential for growth. Plant Cell 16: 406–421
Callis J., and Vierstra R.D. (2000) Protein degradation in signaling. Current Opinion in Plant Biol. 3: 381-386
Carles C., Bies-Etheve N., Aspart L., Leon-Kloosterziel K.M., Koornneef M., Echeverria M., and Delseny M. (2002) Regulation of Arabidopsis thaliana Em genes: role of ABI5. Plant J. 30: 373-383
Cheng W.H., Endo A., Zhou L., Penney J., Chen H.C., Arroyo A., Leon P., Nambara E., Asami T., Seo M., Koshiba T., and Sheen J. (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signalling and abscisic acid biosynthesis and functions. Plant Cell 14: 2723–2743
Chuang H.W., Zhang W., and Gray W.M. (2004) Arabidopsis ETA2, an Apparent Ortholog of the Human Cullin-Interacting Protein CAND1, Is Require for Auxin Responses Mediated by the SCFTIR1 Ubiquitin Ligase. Plant Cell 16: 1883-1897
Choi H., Hong J., Ha J., Kang J., and Kim S.Y. (2000) ABFs, a family of ABA-responsive element binding factors. J. Biol. Chem. 275: 1723-1730
Davies P.J. 1995. Plant hormones. Dordrecht: Kluwer Academic Publishers.
Delauney A.J., and Verma D.P.S. (1994) Proline biosynthesis and osmoregulation in plants. Plant J. 4: 215-223
del Pozo J.C., and Estelle M. (1999) The Arabidopsis cullin AtCUL1 is modified by the ubiquitin-related protein RUB1. Proc. Natl. Acad. Sci. USA 96: 15342-15347
del Pozo J. C., Timpte C., Tan S., Callis J., and Estelle M. (1998) The ubiquitin-related protein RUB1 and auxin response in Arabidopsis. Science 280: 1760-1763
Dharmasiri N., and Estelle M. (2004) Auxin signaling and regulated protein degradation. Trends plant Sci. 9: 302-308
Dharmasiri N., Dharmasiri S. and Estelle M. (2005a) The F-box protein TIR1 is an auxin receptor. Nature 435: 441-445
Dharmasiri N., Dharmasiri S., Weijers D., Lechner E., Yamada M., Hobbie L., Ehrismann J.S., Juergens G. and Estelle M. (2005b) Plant development is regulated by a family of auxin receptor F box proteins. Dev. Cell 9: 109-119
Dolferus R., Peacock W.J., Dennis E.S. (1994) Differential interactions of promoter elements in stress responses of the Arabidopsis Adh gene. Plant Physiol. 105: 1075-1078
Darwin C. (1880). The Power of Movement in Plants. London: John Murray.
Fedoroff N.V. (2002) Cross-talk in Abscisic Acid Signaling. Sci. STKE. 140: RE10


Feng S., Shen Y., Sullivan J.A., Rubio V., Xiong Y., Sun T-P., and Deng X.W. (2004) Arabidopsis CAND1, an unmodified CUL1-interacting protein, is involved in multiple developmental pathways controlled by ubiquitin/proteasome-mediated protein degradation. Plant Cell 16: 1870-1882
Finkelstein R.R., Gampala S.S.L., Rock C.D. (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14: 15-45
Gazzarrini S., and Mccourt P. (2003) Cross-talk in Plant Hormone Signalling: What Arabidopsis Mutants Are Telling Us. Ann. Bot. 91: 605-612
Gibson, S.I. (2000) Plant sugar-response pathways. Part of a complex regulatory web. Plant Physiol. 124: 1532-1539
Gilmour S.J., and Thomashow M.F. (1991) Cold acclimation and cold-regulated gene expression in ABA mutants of Arabidopsis thaliana. Plant Mol. Biol. 17: 1233-1240
Gonzalez-Guzman M., Apostolova N., Belles J. M., Barrero J.M., Piqueras P., Ponce M.R., Micol J.L., Serrano R., and Rodriguez P.L. (2002) The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell 14: 1833-1846
Gray W.M., and Estelle M. (2000) Function of the ubiquitin-proteasome pathway in auxin response. Trends Biochem. Sci. 25: 133-138
Gray W.M., Kepinski S., Rouse D., Leyser O., and Estelle M. (2001) Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins. Nature 414: 271-276
Gray W.M. (2004) Hormonal Regulation of Plant Growth and Development. PLoS Biol. 2: 1270-1273
Guilfoyle T.J. (1998) Auxin-regulated genes and promoters. In Biochemistry and Molecular Biology of Plant Hormones (ed. K. L. Libbenga, M. Hall and P. J. J. Hooykaas). Leiden, The Netherlands: Elsevier pp. 423-459
Hajela R.K., Horvath D.P., Gilmour S.J., Thomashow M.F. (1990) Molecular cloning and expression of cor (cold-regulated) genes in Arabidopsis thaliana. Plant Physiol. 93: 1246-1252
Hellmann H., and Estelle M. (2002) Plant Development:Regulation by Protein Degradation. Science. 297: 793-797
Himmelbach A., Yang Y., and Grill E. (2003) Relay and control of abscisic acid signaling. Curr. Opin. Plant Bio. 6: 670-479
Ishitani M., Xiong L., Stevenson B., Zhu J-K. (1997) Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis thaliana: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. The Plant Cell 9: 1935-1949
Johnson J.R., Cobb B.G., Drew M.C. (1994) Hypoxic induction of anoxia tolerance in roots of Adh1 null Zea mays L. Plant Physiol. 105: 61-67
Kang J.Y., Choi H.I., Im M.Y., and Kim S.Y. (2002) Arabidopsis Basic Leucine Zipper Proteins That Mediate Stress-Responsive Abscisic Acid Signaling. Plant Cell. 14: 343-357

Kim S., Kang J.Y., Cho D.I., Park J.H., and Kim S.Y. (2004) ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J. 40: 75-87
Koegl F., and Kostermans D.G.F.R. (1934). Heteroauxin als Stoffwechselprodukt niederer pflanzlicher Organismen. Isolierung aus Hefe. Hoppe Seyler’s Z. Physiol. Chem. 228: 113-121
Laby R.J., Kincaid M.S., Kim D., Gibson S.I. (2000) The Arabidopsis sugar-insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response. Plant J. 23: 587-596
Leung, J., and Giraudat, J. (1998). Abscisic acid signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 199-222. Biol 49: 199-222
Leyser H.M.O., Lincoln C. A., Timpte C. S., Lammer D., Turner J. C., and Estelle M. (1993) Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme E1. Nature 304: 161-164
Lincoln C., Britton J.H., and Estelle M. (1990) Growth and development of the axr1 mutants of Arabidopsis. Plant Cell. 2: 1071-1080
Lopez-Molina L., and Chua N.H. (2000) A null mutation in a bZIP factor confers ABA-insensitivity in Arabidopsis thaliana. Plant Cell Physiol. 41: 541-547
Lopez-Molina L., Mongrand S., and Chua, N.H. (2001) A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc. Natl. Acad. Sci. 98: 4782-4787
Lopez-Molina L., Mongrand S., McLachlin D.T., Chait B.T., and Chua N.H. (2002) ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J. 32: 317-328
Lopez-Molina L., Mongrand S., Kinoshita N., and Chua N.H. (2003) AFP is a novel negative regulator of ABA signaling thatpromotes ABI5 protein degradation. Genes & Dev. 17: 410-418
Lyapina, S., Cope, G., Shevchenko, A., Serino, G., Tsuge, T., Zhou, C., Wolf, D.A., Wei, N., and Deshaies, R.J. (2001) Promotion of NEDD-CUL1 conjugate cleavage by COP9 signalosome. Science 292: 1382-1385
Mansfield T.A. (1987) Hormones as regulators of water balance. In Plant Hormones and Their Role in Plant Growth and Development, R.D. Davies, ed (Dordrecht, The Netherlands: Martinus Nijhoff Publishers pp. 411-430
Mohapatra S.S., Poole R.J., Dhindsa R.S. (1988) Abscisic Acid-regulated gene expression in relation to freezing tolerance in alfalfa. Plant Physiol. 87: 468-473
Moore B., Zhou L., Rolland F., Hall Q., Cheng W-H., Liu, Y-X., Hwang I., Jones T., and Sheen J. (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormone signaling. Science 300: 332-336
Nonhebel H.M., Cooney T.P., Simpson R. (1993) The route, control and compartmentation of auxin synthesis. Aust J Plant Physiol 20: 527-539
Nordin K., Heino P., and Palva E.T. (1991) Separate signal pathways regulate the expression of a low-temperature-induced gene in Arabidopsis thaliana (L.) Heynh. Plant Mol. Biol. 16: 1061-1071
Nordin K., Vahala T., Palva E.T. (1993) Differential expression of two related, low-temperature-induced genes in Arabidopsis thaliana (L.) Heynh. Plant Mo1. Biol. 21: 641-653
Ono A., Izawa T., Chua N.H., and Shimamoto K. (1996) The rab16B promoter of rice contains two distinct abscisic acid-responsive elements. Plant Physiol. 112: 483-491
Parcy F., and Giraudat J. (1997) Interactions between the ABI1 and the ectopically expressed ABI3 genes in controlling abscisic acid responses in Arabidopsis vegetative tissues. Plant J. 11: 693-702
Rabbani M.A., Maruyama, K., Abe, H., Khan, M.A., Katsura, K., Ito, Y., Yoshiwara, K., Seki M., Shinozaki K., and Yamaguchi-Shinozaki K. (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol. 133: 1755-1767
Ramos J. A., Zenser N., Leyser O., and Callis J. (2001) Rapid degradation of auxin/indoleacetic acid proteins requires conserved amino acids of domain II and is proteasome dependent. Plant Cell 13: 2349-2360
Robinson P. A. and Ardley H.C. (2004) Ubiquitinprotein ligases. J. Cell Sci. 117: 5191-5194
Rock C.D. (2000) Pathways to abscisic acid-regulated gene expression. New Phytol. 148: 357-396
Rock C.D., and Sun X. (2005) Cross-talk between ABA and auxin signaling pathways in roots of Arabidopsis thaliana (L.) Heynh. Planta 222: 98-106
Ruegger, M., Dewey, E., Hobbie, L., Brown, D., Bernasconi, P., Turner, J., Muday, G. and Estelle, M. (1997) Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects. Plant Cell. 9: 745-757
Ruegger M., Dewey E., Gray W.M., Hobbie L., Turner, J., and Estelle M. (1998) The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grr1p. Genes Dev. 12: 198-207
Rolland F., Winderickx J., and Thevelein J.M. (2001) Glucosesensing mechanisms in eukaryotic cells. Trends Biochem. Sci. 26: 310-317
Rolland F., Moore B., and Sheen J. (2002) Sugar sensing and signaling in plants. Plant Cell S185-S205
Rolland F., and Sheen J. (2005) Sugar sensing and signaling networks in plants. Biochem. Soc. Trans. 33: 269-271
Rook F., Gerrits N., Kortstee A., van Kampen M., Borrias M., Weisbeek P. & Smeekens S. (1998) Sucrose-specific signaling represses translation of the Arabidopsis ATB2 bZIP transcription factor gene. Plant J. 15: 253-263
Schwechheimer C., and Schwager K. (2004) Regulated proteolysis and plant development. Plant Cell Rep. 23: 353-364
Schwechheimer C., Serino G., Callis J., Crosby W.L., Lyapina S., Deshaies R.J., Gray W.M., Estelle M., and Deng X.W. (2001) Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCFTIRI in mediating auxin response. Science 292: 1379-1382
Shinozaki K., and Yamaguchi-Shinozaki K. (1997) Gene expression and signal transduction in water-stress response. Plant Physiol. 115: 327-334
Shinozaki K., and Yamaguchi-Shinozaki K. (2000). Molecular response to dehydration and low temperature: differences and cross-talk between two stress signalling pathways. Cur. Opin. in Plant Bio. 3: 217-223
Smeekens S. (2000) Sugar-induced signal transduction in plants. Annu. Rev. of Plant Physiol. and Plant Mol. Bio. 51: 49–81
Stockinger E., Gilmour S.J., Thomashow M.F. (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA 94: 1035-1040
Stone S.L., Hauksdottir H., Troy A., Herschleb J., Kraft E., and Callis J. (2005) Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol. 137: 13-30
Stulke, J., and Hillen, W. (1999). Carbon catabolite repression in bacteria. Curr. Opin. Microbiol. 2: 195-201
Swarup R., Parry G. Graham N., Allen T., and Bennett M. (2002) Auxin cross-talk:integration of signaling pathways to control plant development. Plant Mol. Biol. 49: 411-426
Söderman E., Brocard I., Lynch T., Finkelstein R. (2000) Regulation and function of the Arabidopsis ABA-insensitive4 (ABI4) gene in seed and ABA response signaling networks. Plant Physiol. 124:1752-1765
Tian Q., Uhlir N.J. and Reed J.W. (2002) Arabidopsis SHY2/IAA3 inhibits auxin-regulated gene expression. Plant Cell 14: 301-319
Thomashow M.F. (1990) Molecular genetics of cold acclimation in higher plants. Adv. Genet. 28: 99-131
Tiwari S.B., Hagen G. and Guilfoyle T.J. (2003) The roles of auxin response factor domains in auxinresponsive transcription. Plant Cell 15: 533-543
Ulmasov T., Hagen G. and Guilfoyle T.J. (1997) ARF1, a transcription factor that binds to auxin response elements. Science 276: 1865-1868
Ulmasov T., Hagen G. and Guilfoyle T. J. (1999) Dimerization and DNA binding of auxin response factors. Plant J. 19: 309-319
Uno Y., Furihata T., Abe H., Yoshida R., Shinozaki K., and Yamaguchi-Shinozaki K. (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and highsalinity conditions. Proc. Natl. Acad. Sci. USA 97: 11632-11637
Voges D., Zwickl P. and Baumeister W. (1999) The 26S proteasome: A molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. 68: 1015-1068
Weber H., Borisjuk L. and Wobus U. (1997) Sugar import and metabolism during seed development. Trends Plant Sci. 2: 169–174

Webb M.S., Gilmour S.J., Thomashow M.F., Steponkus P.L. (1996) Effects of COR6.6 and COR15am polypeptides encoded by COR (cold-regulated) genes of Arabidopsis thaliana on dehydrationinduced phase transitions of phospholipid membranes. Plant Physiol. 111: 301-312
Worley C. K., Zenser N., Ramos J., Rouse D., Leyser O., and Callis J. (2000) Degradation of Aux/IAA proteins is essential for normal auxin signalling. Plant J. 21: 553-562
Xiong L., Gong Z., Rock C.D., Subramanian S., Guo Y., Xu W., Galbraith D., and Zhu J.K. (2001a) Modulation of abscisic acid signal transduction and biosynthesis by an Sm-like protein in Arabidopsis. Dev. Cell. 1: 771-781
Xiong L., Ishitani M., Lee H., and Zhu J.K. (2001b) The LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell 13: 2063-2083
Yamaguchi-Shinozaki K., and Shinozaki K. (1993) The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Mol. Gen. Genet. 238: 17-25
Yamaguchi-Shinozaki K., and Shinozaki K.(1993) Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mo1. Gen. Genet. 236: 331-340


Yamaguchi-Shinozaki K., and Shinozaki K. (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6: 251-264
Yoshiba Y., Nanjo T., Miura S., Yamaguchi-Shinozaki K., Shinozaki K. (1999) Stress-responsive and developmental regulation of delta1- pyrroline-5-carboxylate synthetase 1 (P5CS1) gene expression in Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 261: 766-772
Yoshihiro N., Nakashima K., Shinwari Z.K., Sakuma Y., Furihata T., Abe H., Narusaka M., Shinozaki K., Yamaguchi-Shinozaki K. (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses The Plant J. l34:137-148
Zheng, J., Yang, X., Harrell, J.M., Ryzhikov, S., Shim, E.H., Lykke-Andersen, K., Wei, N., Sun, H., Kobayashi, R., and Zhang, H. (2002a). CAND1 binds to unneddylated CUL1 and regulates the formation of SCF ubiquitin E3 ligase complex. Mol. Cell. 10: 1519-1526
Zheng N., et al. (2002b) Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 416: 703-709
Zhang X., Garreton V., and Chua N.H. (2005) The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Genes Dev. 19:1532-1543


Zhou L., Jang J.C., Jones T.L., and Sheen J. (1998) Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant. Proc. Natl. Acad. Sci. USA 95: 10294-10299
Zhu J.K. (2002) Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53: 247-273
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文