跳到主要內容

臺灣博碩士論文加值系統

(100.28.231.85) 您好!臺灣時間:2024/11/06 15:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳芳君
研究生(外文):Fang-Chun Wu
論文名稱:建立植物大片段DNA轉殖系統
論文名稱(外文):Establishment of High-Molecular-Weight DNA Transformation Systems in Plants
指導教授:張岳隆
指導教授(外文):Yueh-Long Chang
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:農業生物技術研究所
學門:農業科學學門
學類:農業技術學類
論文種類:學術論文
論文出版年:2004
畢業學年度:95
語文別:中文
論文頁數:114
中文關鍵詞:大片段 DNA番茄菸草基因槍及農桿菌轉殖
外文關鍵詞:High-Molecular-Weight DNAtomatotobaccoparticle bombardment and Agrobacterium-mediated transformation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:375
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
基因轉殖是一項從事修飾與促進生物體基因多樣性的新策略;在農業上它可以加速作物改良過程,因而解決病害與逆境所遭受的生產難題。植物基因轉殖所轉入的外源 DNA 片段通常都小於 20 kb,而 50 kb 以上的大片段 DNA(high molecular weight DNA)轉殖效率則偏低。因此,本試驗之目的為利用農桿菌及基因槍轉殖法,將 83 kb 的阿拉伯芥基因組片段轉殖入番茄及菸草基因組中,以建立一套有效轉殖大片段 DNA 到經濟作物之系統。經由基因槍方法將 3I5 DNA 直接射擊番茄培植體,目前已獲得 4 株轉殖植株,經 PCR 分析初步確認帶有 npt II 基因,待進一步以 PCR 及南方墨漬法檢測 3I5 DNA 在基因組中的完整性及拷貝數(copy number)。在煙草基因槍轉殖方面,經由 PCR 及南方墨漬法分析,已證實 3I5 DNA 可以穩定的整合至基因組中,並從 T1 遺傳至 T2 世代。觀察 不同 T2 世代菸草轉殖株,發現有不同的外表型態,且外源基因有不同的表現程度。然而,將大片段 DNA 轉型入農桿菌後,發現有刪除或失去等不穩定的現象,使大片段 DNA 轉殖受到阻礙。由本試驗結果得知,基因槍法似乎比農桿菌法較簡便,適用於轉殖大片段 DNA 至植物中。在未來,植物大片段 DNA 轉殖技術將有助於本實驗室從事基因功能確認(gene function identification)以及允許同時轉入基因群到作物中進行遺傳工程改造。
Gene transfer creates a new strategy to modify and increase the biodiversity of genomes of any living organism; in agriculture, it accelerates the process of crop improvement to solve production problems caused by diseases and abiotic stress. For plant transformation with DNA sizes of less than 20 kb, it has become a common routine. However, the transfer of High-Molecular-Weight (HMW) DNA above 50 kb was reportedly less efficient. This study intends to transfer a 83 kb fragment of Arabidopsis genomic DNA into tomato and tobacco by Agrobacterium-mediated and particle bombardment methods. At present, four tomato transgenic plants were regenerated from biolistic transformation and identified with npt II gene by PCR reaction; and further analysis by PCR reaction and southern hybridization will be necessary to investigate the intact and copy number of 3I5 DNA in its genome. In the bombardment transformation of tobacco, stable integration and transmission of the 3I5 DNA from T1 to T2 generation were confirmed by PCR and southern hybridization. Different morphological phenotypes of T2 tobacco plants have shown discriminate gene expression levels of some genes in the 3I5 DNA. However, the 3I5 DNA, after being transferred into Agrobacterium, has resulted in the deletion of DNA segment by which the HMW DNA transformation via Agrobacterium is retarded. Conclusively, in our studies, the particle bombardment method seems to be easier and more convenient than Agrobacterium-mediated transformation to transfer large DNA fragment into plant genomes. Then the technique of HMW DNA transformation will be used to accelerate gene function identification or transfer simultaneously a cluster of genes for crop improvement in our research.
誌謝…………………………………………………..…………………………...I
摘要…………………………………………………..……………….…….……II
英文摘要…………………………………………………..…………………….III
目錄………………………………………………………..………………….…IX
圖目錄……………………………………………..………………………….….X
表目錄……………………………………………………………..…………...XIII
壹、緒言………………………………………………………..…….…………..1
貳、文獻探討………………………………………………………..….……..…3
一、 植物組織培養………………………………………………….………..3
二、 植物基因轉殖………………………………………………….………..5
(一)基因槍轉殖法……………………………………………..……….……..6
(二)農桿菌轉殖………………………………………….………...…..…….10
(三)番茄農桿菌轉殖……………….………………………………….…….17
三、 大片段 DNA 之轉殖……………………………………...…….….…18
(一)大片段 DNA 選殖系統………………………………………...………19
(二)適用於農桿菌轉殖大片段 DNA 之系統……………………..…….…20
(三)轉殖大片段DNA所遭遇之問題…………………………………….…20
(四)基因槍之大片段 DNA轉殖………………………………...…….……23
(五)農桿菌之大片段 DNA轉殖…………………………………...…….…23
(六)轉殖大片段 DNA 之應用…………………………………..……….…24
參、材料與方法…………………………………………………..………….…26
第一部分、番茄大片段 DNA 之轉殖
一、番茄組織培養……………………………………………..………….……26
(一)番茄材料來源…………………………………………..………….……26
(二)培養基之配製…………………………………………..…………….…26
1. 番茄種子無菌播種………………………………………..………...….…26
2. 番茄培植體再生植株之步驟………………………………...……..….…27
(三)試驗處理
1. 不同生長調節劑濃度組合對番茄子葉誘導愈傷組織及不定芽之影響...27
2. 不同生長素對番茄的再生植株誘導發根之影響……………………...…28
3. 不同番茄培植體類型於誘導培養後之影響……...………………………28
4. 不同抗生素濃度對番茄培植體篩選之試驗……………………...………28
二、大片段 DNA 載體材料之準備……………………………………………28
(一)載體及大片段 DNA 來源………………………………………………28
(二)大片段 DNA 之大量培養及萃取………………………………………29
(三)大片段 DNA 之纯化……………………………………………………30
(四)大片段 DNA 之確認……………………………………………………30
三、大片段 DNA 之基因槍轉殖………………………………………………31
(一)基因槍系統…………………………………………………….…………31
(二)金粒子微載體之備製………………………………………….…………32
(三)DNA 附著(coating)於微粒子之備製………………..…….…………32
(四)基因槍轉殖之步驟……………………………………………………….32
(五)轉殖植物的篩選與再生……………………….…………………………33
(六)試驗處理
1. 基因槍轉殖培植體之 GUS 活性染色分析…………….………………..34
2. 基因槍射擊後不同的誘導培養時間對培植體生長之影響……..……….35
3. 基因槍轉殖後不同番茄培植體的再生效率………………………….…..35
(七)轉殖植株之分析………………………..………………………………..35
1. 基因組 DNA 萃取液(extraction buffer)之配製……….……….……..35
2. 番茄基因組 DNA 之萃取與純化……………………………….….…….36
3. 聚合酶連鎖反應檢測基因槍轉殖再生植物…………………….………..37
四、大片段 DNA 之農桿菌轉殖………………..……………………..………37
(一)農桿菌品系………………………………………..……………..………37
(二)培養基之配製……………………………………………………………37
(三)3I5 DNA 轉型入農桿菌………………………………...………………38
1. 轉型步驟……………………………….……………..……………………38
2. 農桿菌之保存……………………….………………..………………….…38
3. 農桿菌之生化檢測…………………………………………………………39
4. 農桿菌之 PCR 分析………………………………………………...…..…39
第二部分、大片段 DNA(3I5 DNA)轉殖菸草之分析……………….……..39
一、大片段 DNA 轉殖 T1 與 T2 世代菸草種子之來源………………….….39
二、轉殖子代菸草種子之抗生素篩選………………………….………………40
三、轉殖子代菸草之栽種………………………………………….……………40
四、菸草基因組 DNA 之萃取與純化…………………………………………40
五、菸草 RNA 之萃取…………………………………………………………40
六、聚合酶連鎖反應(PCR)之檢測………………………...………………..41
七、南方墨漬法鑑定轉殖菸草………………………………………..………..41
八、轉殖子代菸草植株之外表型態觀察………………………………………44
九、反轉錄聚合酶連鎖反應(RT-PCR)…………………………….………..44
肆、結果…………………………………………………………………….……46
第一部分、番茄大片段 DNA 之轉殖
一、番茄組織培養……………………………..……………………….………..46
(一)番茄培植體經組織培養後植株再生情形……………………………….46
(二)試驗結果
1. 不同生長調節劑組合對番茄子葉誘導愈傷組織及不定芽之影響……....48
2. 不同生長素對番茄再生植株誘導發根之影響…………………………....48
3. 不同番茄培植體種類於培養後之反應比較……………………….…...…51
4. 番茄培植體之抗生素濃度篩選試驗…………………….…………….…..51
二、大片段 DNA 載體材料之確認…………………………………………….51
(一)大片段 DNA之 PCR 檢測及限制酵素處理…………………………..51
(二)大片段 DNA 之序列資訊………………………………………..……...55
三、大片段 DNA 之基因槍轉殖………….……………………..………….….55
(一)轉殖植物的篩選與再生…………….…………………………..…….….55
(二)試驗處理
1. 基因槍轉殖培植體之 GUS 活性染色分析………………….…..…….…59
2. 基因槍射擊後不同的誘導培養時間對培植體生長之影響…………...….61
3. 基因槍轉殖後不同番茄培植體的再生效率………………………...….…61
(三)番茄轉殖植株之分析…………………………………………………….64
1. 聚合酶連鎖反應檢測基因槍轉殖再生植株………………………….…...64
四、大片段 DNA 之農桿菌轉殖………………………………………….……67
(一)3I5 DNA 轉型入農桿菌……………………………………..…….…….67
1. 農桿菌之生化檢測…………………………………………..…….……….67
2. 農桿菌之 PCR 檢測………………………….……….…………….……..67
第二部分、大片段 DNA 轉殖菸草之分析
一、轉殖 T1 與 T2 世代菸草種子之抗生素篩選…………….….…………….71
二、聚合酶連鎖反應檢測轉殖菸草………………………….…………………76
三、南方墨漬法鑑定轉殖菸草………………………………...………………..82
(一)T1 世代菸草基因組 DNA 之限制酵素切割…………….……………..82
(二)以 3I5 DNA 片段為目標基因…………………………….…………….82
(三)以 npt II 基因為目標基因…………………………….….………...…..82
四、子代菸草植株之外表型態觀察…………………………..…….……...…..82
五、反轉錄聚合酶連鎖反應(RT-PCR)………………….……….………….86
伍、討論……………………………………………………………..…………..90
第一部分、番茄大片段 DNA 之轉殖………………………..………………..90
一、番茄組織培養…………………..…………………………………………..90
二、大片段 DNA 之基因槍轉殖……………………...……………………….92
三、大片段 DNA 之農桿菌轉殖………………………………………………96
第二部分、大片段 DNA 轉殖菸草之分析……………..….………………….98
陸、結論……………………...…………………………………………………102
柒、參考文獻………………………………...…………………………………103
附錄……………………………………………...………………………………110
附錄一、Binary vector pCLD04541 之圖譜及所含限制酵素切位………..…110
附錄二、Murashige and Skoog(MS)培養基之基本組成…………….…….112
附錄三、BIBAC 3I5 DNA 所包含的基因及其功能……………….…………113
附錄四、英文縮寫對照表………………………………………………………114





圖目錄
圖一、番茄子葉及下胚軸經誘導培養及再生,分別有癒傷組織與不定芽的
形成以及隨後植株再生之情形…………………………………………..47
圖二、不同番茄培植體類型培養於誘導培養基約三周後所觀察之生長情形..52
圖三、未轉殖的番茄子葉及下胚軸培養於不同濃度的 kanamycin 中,經
三週篩選後之生長情形………………………………………………….53
圖四、以 PCR 反應及限制酵素切割確認 3I5 DNA 之完整性…….………..54
圖五、基因槍轉殖後,番茄子葉及下胚軸經篩選培養後形成不定芽、再生
植株以及生根之情形……………………………………………..………56
圖六、基因槍轉殖後,番茄子葉及下胚軸經誘導篩選培養後,培植體形
成癒傷組織及分化之情形………………………………………………..57
圖七、基因槍射擊後,番茄下胚軸經誘導篩選所形成的兩種外表型態……..58
圖八、培植體在基因槍射擊 pCAMBIA 1305.1 載體 DNA 後,經組織化
學GUS染色法分析所觀察到的培植體表面藍色點呈色情形…………..60
圖九、基因槍射擊後的培植體,移至不含抗生素的誘導培養基中處理 3、
6 及9 天之後,進行繼代篩選一個月後所觀察的培植體生長情形.....62
圖十、利用 PCR 檢測 3I5 DNA 轉殖番茄的 npt II 基因,其片段大小為
700 bp……………......…………………………………………………….65
圖十一、使用 3I5 DNA 的前段、中段以及後段之三對引子進行 PCR 增
幅,發現有多餘的片段產生之情形…………………………………..66
圖十二、農桿菌 EHA105 經電擊轉型入 3I5 DNA 後,進行農桿菌生化檢
測之情形……………………………………………………….………..68
圖十三、農桿菌 EHA105 經電擊轉型入 3I5 DNA 後,取三管菌液分別進
行 npt II 之PCR 增幅反應,於 700 bp 有 DNA 片段產生………..69
圖十四、農桿菌 EHA105 經電擊轉型入 3I5 DNA 後,用三個菌落直接進
行primer1、2 及 3 之PCR 分析之情形…………………………….70
圖十五、農桿菌 EHA105 經電擊轉型入 3I5 DNA 後,取三管菌液分別進
行primer1、2 及 3 之 PCR 分析,發現 3I5 DNA 有刪除的情形… 72
圖十六、農桿菌 LBA4404 經電擊轉型入 3I5 DNA 後,取 7 管菌液分別
進行 primer 1、2 及 3 之 PCR 分析,發現 3I5 DNA 有刪除情形...73
圖十七、農桿菌 LBA4404 經電擊轉型入 3I5 DNA 後,取保存於 -80 ℃
的菌液,進行 primer 1、2 及 3 之 PCR 分析可增幅出 primer 1
及 primer 3 之片段..…....................…………………………………...74
圖十八、野生菸草及 3I5 DNA 轉殖 T1 世代菸草種子經 kanamycin 篩選
二週後之生長情形…………………………………………….………..75
圖十九、野生菸草及 3I5 DNA 轉殖的 T2 世代菸草種子經 kanamycin 篩
選二週後之生長情形…………………………………………….……..77
圖二十、以 PCR 檢測轉殖 T1 世代菸草基因組 DNA 之 npt II 基因..….….78
圖二十一、以 PCR 檢測轉殖 T2 世代菸草不同植株之 npt II 基因….……...79

圖二十二、使用 3I5 DNA 的前段、中段以及後段之三對引子進行 PCR
分析,確認 T1 世代菸草中 3I5 DNA 之完整性………………...80
圖二十三、使用 3I5 DNA 的前段、中段以及後段之三對引子進行 PCR
分析,確認 T2 世代菸草不同植株內 3I5 DNA 之完整性………81
圖二十四、T1 世代菸草基因組 DNA 經 Hind III 處理後跑膠形成 smear
之情形…………………………………….…..………………………83
圖二十五、利用南方墨漬法分析,證實轉殖T1 世代菸草中帶有 3I5 DNA….84
圖二十六、利用南方雜交分析,證實T1 世代菸草中帶npt II 基因……...…...85
圖二十七、野生種菸草與大片段 DNA 轉殖 T1 世代菸草栽種於溫室後之
外表型態的比較……………………………………………………...87
圖二十八、野生種菸草與大片段 DNA 轉殖轉殖 T2 世代菸草栽種於溫室
後之外表型態生長情…………………………………...……………88
圖二十九、T2 世代轉殖菸草進行RT-PCR分析之情形……………….………...89









表目錄
表一、不同植物生長調節劑組合對番茄子葉誘導愈傷組織及不定芽之影響…49
表二、不同生長素對番茄再生植株誘導發根之影響……………………………50
表三、基因槍轉殖經篩選後不同番茄培植體的再生效率………………………63
王冰、李家洋和王永紅。2006。生長素控植物株型形成的研究進展。植物學通報。23(5):443-458。
王月華、孫鵬凱和余淑美。2005。第7-23頁。植物基因轉殖之原理與應用 植物基因轉殖技術之研發與展望。植物生物技術教學資源中心主編。
王軍和鄭志榮。2004。轉基因番茄育種和產業化研究進展。中國農學通報20(3):22-25。
王翠亭和衛志明。2003。根癌農桿菌介導小麥幼胚遺傳轉化的影響因素。植物生理與分子生物學學報29(6):521-529。
王啟正。2000。農桿菌在植物基因轉殖上之原理及應用(上)。花蓮區農業專訊33:22-23。
王啟正。2000。農桿菌在植物基因轉殖上之原理及應用(下)。花蓮區農業專訊34:20-22。
任東植、李峰、曲運琴、白莉、王文琪和李富畢。2000。影響枣組培苗玻璃化的幾個因素及其防治。植物生理學通訊。36(1):21-23。
柳建安。2005。第 38-43 頁。植物基因轉殖與分子檢測技術 番茄之基因轉殖。
張紅宇、汪秀志、趙秀云、汪旭東和吳先軍。2004。農桿菌介導的共轉化體系的研究進展。中國農學通報20(2):26-28。
曾夢姣和劉程煒。2005。第73-85頁。植物基因轉殖之原理與應用 基因槍轉殖技術。植物生物技術教學資源中心主編。
梁雪蓮、孫毅、郭平毅、劉惠民、劉少翔、王景雪、解志紅和孫丹。2003。農桿菌介導轉化小麥幼胚獲得抗除草劑再生植株。植物生理與分子生物學學報29(6):501-506。
詹明才。2005。第59-72頁。植物基因轉殖之原理與應用 農桿菌轉殖技術。植物生物技術教學資源中心主編。
葉志彪、李漢霞和周國林。1994。番茄子葉離體培養與再生植株。華中農業大學學報13(3)291-295。
郭昭麟、羅淑芳、李鎮宇和蔡新聲。2005。第25-24頁。植物基因轉殖之原理與應用 物組織培養再生技術與基因轉殖。植物生物技術教學資源中心主編。
陳佳莉。2006。利用菸草原生質體進行大分子DNA轉殖的可行性。國立嘉義大學農業生物技術研究所碩士論文。
陳榮芳。2005。第 57-72 頁。植物基因轉殖與分子檢測技術 青花菜之基因轉殖技術。
陳俊仁。2002。原生切葉植物組織培養繁殖技術。台南區農業專訊40:1-5。
陳榮五、黃勝志、許謙信和陳彥睿。1996。第1-3頁。花卉組織培養實用技術手冊。台中區農業改良場編印。
賴建洲、張森富、方煒和蔡新聲。2004。透氣率對康乃馨與玄蔘組培苗玻璃質化影響之探討。生機與農機論文發表會。宜蘭。台灣生物機電學會。
鄭正義。2006。以農桿菌及基因槍法進行大片段 DNA 的轉殖。國立嘉義大學農業生物技術研究所碩士論文。
鄭秋萍和郭如玉。2005。植物保護生技。科學發展392:7-11。
Abel, S., and A. Theologis. 1996. Early genes and auxin action. Plant Physiol. 111:9-17.
Adam, G., J. A. Mullen, and K. L. Kindle. 1997. Retrofitting YACs for direct DNA transfer into plant cells. Plant J. 11:1349-1358.
Agharbaoui, Zahra., A. F. Greer, and Z. Tabaeizadeh. 1995.Transformation of the wild tomato Lycopersicon chilense Dun. By Agrobacterium tumefaciens. Plant Cell Rep. 15:102-105.
Altpeter, F., N. Baisakh, R. Beachy, R. Bock, T. Capell, P. Christou, H. Daniell, K. Datta, S. Datta, S., P. J Dix, C. Fauquet, N. Huang, A. Kohli, H. Mooibroek, L. icholson, T. T. guyen, G. Nugent, K. Raemakers, A. Romano, D. A. Smers, E. Stoger, N. Taylor N. and R. Visser. 2005. Particle bmbardment and the genetic enhancement of crops:myths and realities. Molecular Breeding 15:05-327.
Ajay. K., R. M. Twyman, R. Abranches, E. Wegel, E. Stoger, and P. Christou. 2003. Transgene integration, organization and interaction in plants. Plan. Mol. Bio. 52:247-258.
Armaleo, D., G. N. Ye, T. M. Klein, K. B. Shark, J. C. San-ford, and S. A. Johnston. 1990. Biolistic nuclear transformation of Saccharomyces cerevisae and other fungi. Current. Genet. 17:97-103.
Bhatia, T., N. Ashwath, T. Senaratna, and D. Midmore. 2004. Tissue culture studies of tomato (Lycopersicon esculentum Mill.). Plant. Cell Tiss. Org. Cult. 4566:1-21.
Bottcher, I., K. Zoglauer, and H. Goring. 1988. Induction and reversion of vitrification of plants cultured in vitro. Physiol. Plantarum. 72:560-564.
Burke, D.T., G. F. Carle, and M. V. Olson. 1987. Clonmg of large segments of exogenous DNA into yeast by means of arhficial chromosome vectors. Science 236:806-812.
Costa, M. G. C., F. T. S. Nogueira, M. L. Figueira, W. G. C. Otoni, S. H. Brommonschenkel, and P. K. Cecon. 2000. Influence of the antibiotic timentin on plant regeneration of tomato(Lycopersicon esculentum Mill.)cultivars. Plant Cell Rep. 19: 327-332.
Cortina, C., and FA. Culianez-Macia. 2004. Tomato transformation and transgenic plant production. Plant. Cell Tiss. Org. Cult. 76:269-275.
Chen, L., P. Marmey, N. Taylor, J-P. Brizard, S. Espinoza, P. D’Cruz, H. Huet, S. Zhang, DE A. Kochko. R. Beachy, and C. Fauquet. 1998. Expression and inheritance of multiple transgenes in rice plants. Nat. Biotech. 16:1060–1064.
Choi, S., D. Begum, H. Koshinsky, D. W. Ow, and R. A. Wing. 2000. A new approach for the identification and cloning of genes: the pBACwich system using Cre/lox site-specific recombination Nucleic Acids Res. 28:E19.
Christou, P. 1992. Genetic transformation of crop plants using microprojectile bombardment. Plant J. 2:275-281.
Christou, P., T. L. Ford, and M. Kofron. 1991. Production of transgenic rice (Oryza sat/va L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio. Technology. 9:957-962.
Crossway, A., J. V. Oakes, J. M. Irvine, B. Ward, V. C. Knauf, and C.K. Shewmaker. 1986. Integration of foreign DNA following microinjection of tobacco mesophyll protoplasts. Mol. Gen. Genet.202:179-185.
Daniell, H. 1999. New tools for chloroplast genetic engineering. Nat. Biotech. 17:855–856.
de Frammond, A. J., K. A. Barton, and M. D. Chilton. 1983. Mini-Ti-: a new vector strategy for plant genetic engineering. Bio. Technology 5: 262-269.
de la Riva, G. A., J. Gonzlez-Cabrera, R. Vzquez-Padrn, and C. Ayra-Pardo. 1998. Agrobacterium tumefaciens : a natural tool for plant transformation . Electron. J. Biotechnol. 1:118-129.
Doty, S. L., N. C.Yu, J. I. Lundin, J. D. Heath, and E. W. Nester. 1996. Mutational analysis of the input domain of the VirA protein of Agrobacterium tumefaciens. J Bacteriol.178:961-70
Ellul, P., B. Garcia-Sogo, B. Pineda, G. Rios, L. A. Roig, and V. Moreno. 2003. The ploidy level of transgenic plants in Agrobacterium-. mediated transformation of tomato cotyledons (Lycopersicon es-. culentum L. Mill.) is genotype and procedure dependent.Theor. Appl. Genet. 106:231-238.
El-Farash E.M., H. I. Abdalla, A. S. Taghian, and M. H. Ahmad. 1993. Genotype, explant age and explant type as effecting callus and shoot regeneration in tomato. Assiut J. Agri. Sci. 24:3-14.
Ercolano, M. R., A. Ballvora, J. Paal, H. H. Steinbiss, F. Salsmini, and C. Gebhardt. 2004. Functional complementation analysis in potato via biolistic transformation with BAC large DNA fragments. Mole. Breed. 13:15-22.
Feng. J., B. A. Vick, A. M. K. Lee, H. B. Zhang, and C. C. Jan. 2006. Construction of BAC and BIBAC libraries from sunflower and identification of linkage group-specific clones by overgo hybridization. Theor. Appl. Genet. 113:23-32.
Finer, J., K. Finer, and T. Ponappa. 1999. Particle bombardmentmediated transformation. In Plant Biotechnology. pp.59-80.
Finer, J., P. Vain, M. W. Jones, and M. D. McMullen. 1992. Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep. 1: 323-328.
Fitch, M. M. M., R. M Manshardt, D. Gonsalves, J. L. Slightom, and J. C. Sanford. 1990. Stable Uansformation of papaya via micmprojectile bombardment. Plant Cell Rep. 9:189-194:
Frary, A., and C. M. Hamilton. 2001. Effect and stability of high molecular weight DNA transformation: an analysis in tomato. Transgenic Res. 10:121-132.
Frart, A., and E. D. Earle. 1996. An examination of factors affecting the efficiency of Agrobacterium-mediated transformation of tomato. Plant Cell Rep. 16:235-240.
Gelvin, S. B. 2003. Agrobacterium-mediated plant transformation: the biology behind the “Gene-Jockeying” tool. Microbiol Mol Biol Rev. 67:16-37.
Gelvin, S. B. 2000. Agrobacterium and plant genes involved in T-DNA transfer and integration . Annu. Rev. Plant Physiol. Plant Mol. Biol. 2000. 51:223-256.
Gorbumova, V. V., and A. A. Levy. 1999. How plants make ends meet : DNA double-strand break repair. Trend Plant Sci. 4:263-269.
Gordon-Kamm, W.J., T. M. Spencer, M. L. Mangano, T. R. Adams, R. J. Daines, W. G. Start, J. V. O'Brien, S. A. Chambers, J. W. R. Adams, N. G. Willetts, T. B. Rice, C. J. Mackey, R. W. Kreuger, A. P. Kansch, and P. G. Lemaux. 1990. Transformation of maize cells and regeneration of fertile transgenic plants. The Plant Cell. 2:603-618.
Hagen, G., and T. Guilfoyle. 2002. Auxin-responsive gene expression : genes, promoters and regulatory factors. Plant Mol. Biol. 49:373-385.
Hamilton, C. M., A. Frary,Y. Xu, S. D. Tanksley, and H. B. Zhang. 1999. Construction of tomato genomic DNA libraries in a binary BAC (BIBAC) vector. Plant J. 18:223-229.
Hamilton, C. M. 1997. A binary-BAC system for plant transformation with high-molecular-weight DNA. Gene 200:107-116.
Hamilton, C. M., A. Frary, C. Lewis, and S. D. Tanksley. 1996. Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc. Natl. Acad. Sci. U S A. 93:9975-9979.
He, R. F., Y. Wang, Z. Shi, X. Ren, L. Zhu, Q. Weng, and G. C. He. 2003. Construction of a genomic library of wild rice and Agrobacterium-mediated transformation of large insert DNA linked to BPH resistance locus.
Hoekema, A., P. K. Hirsh, P. J. J. Hooykaas, and R. A. Schilperoort. 1983. A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179-180.
Hood, E. E., S. E. Gelvin, L. S. Melchers, and A. Hoekema. 1993. New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res. 2:208-218.
Hooykaas, P. J. J., and R. A. Shilperoort. 1992. Agrobacterium and plant genetic engineering. Plant Molecular Biology 19:15-38.
Ioannou, P. A., C. T. Amemiya, J. Garnes, P. M. Kroisel, H. Shizuya, C. Chen, M. A. Batzer, and P. J. de Jong. 1994. A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nat Genet. 6:84-89.
Iida, A., M. Seki, Y. Yamada, and H. Morikawa. 1990. Gene delivery into cultured plant cells by DNA-coated gold particles accelerat by a pneumatic particle gun. Theor. Appl. Genet. 80:813-816.
Ishiura, M., N. Hazumi, T. Koide, T. Uchida, and Y. Okada. 1989. A recB recC recJ host prevents recA-independent deletions in recombinant cosmid DNA propagated in Escherchia coli. J. Bacteriol. 171:1068-1074.
Jin, S., Y. Song, S. Pan, and E. W. Nester. 1993. Characterization of a virG mutation that confers constitutive virulence gene expression in Agrobacterium-tumefaciens. Mol. Microbiol. 7:555-562.
Kaeppler, H. F., G. Weining, D. A. Somers, H. W. Rines, and A. F. Cockburn. 1990. Silicon carbide fiber-mediated DNA delivery into plant cells. Plant Cell Rep.9:415-418.
Lacroix, B., T. Tzfira, A. Vainstein, and V. Citovsky. 2006. A case of promiscuity : Agrobacterium’s endless hunt for new partners. Trends Genet. 22:29-37.
Li. W., G. Guo, and G. Zheng. 2000. Agrobacterium-mediated transformation : state of the art and future prospect. Chin. Sci. Bul. 17:1537-1546.
Liu, Y. G., Y. Shirano, H. Fukaki, Y. Yanai, M. Tasaka, S. Tabata, and D. Shibata. 1999. Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. Proc. Natl. Acad. Sci. USA. 96:6535–6540.
Luthra, R., V. Varsha, R. Dubey, A. Srivasyava, and S. Kumar. 1997. Microprojectile mediated plant transformation: a bibliographical search. Euphytica 95: 269–294.
Marianne, D., V. Santoni, M. Caboche, and C. Bellin. 1997. Cristal mutations in Arabidopsis confer a genetically heritable, recessive, hyperhydric phenotype. Planta. 202:51-61.
Matthysse, A. G. 1986. Initial interactions of Agrobacterium-tumefaciens with plant host cells. Crit. Rev. Microbiol. ;13:281-307
McCabe, D.E., and B. J. Martinell. 1993. Transformation of elite cotton cultivars by particle bombardment of meristerns. Bio. Technology. 1:596-598.
Men, A. E., K. Meksem, M. A. Kassem, D. Lohar, J. Stiller, D. Lightfoot, and P. M. Gresshoff. 2001. A bacterial artificial chromosome library of Lotus japonicus constructed in an Agrobacterium tumefaciens-transformable vector. Mol. Plant. Microbe. Interact. 14:422-425.
Mirada, A., G. Janssen, L. Hodges, E. Peralta, and W. Ream. 1992. Agrobacterium-tumefaciens transfers extremely long T-DNAs by a unidirectional mechanism. J. Bacteriol. 174:2288-2297.
MoCormick, S., J. Niedermeyer, J. Fry, A. Barnason, R. Horsch, and R. Fraley. 1986. Leaf disc transformation of cultivated tomato(L. esculentum)using Agrobacterium tumefaciens. Plant Cell Rep. 5:81-84.
Mullen, J., G. Adam, A. Blowers, and E. Farle. 1998. Biolistic transfer of large DNA fragments to tobacco cells using YACs retrofitted for plant transformation. Mol. Breeding 4:449-457.
Nakano, A., G. Suzuki, M. Yamamoto, K. Turnbull, S. Rahman, and Y. Mukai. 2005. Rearrangements of large-insert T-DNA in transgenic rice. Mol. Gen. Geno. 273:123-129.
Nester, E. W., M. P. Gordon, R. M. Amasino, and M. F. Yanofsky, 1984. Grown gall: a molecular and physiological analysis. Annual Review of Plant Physiology. 35:387-413.
Oktem, H. A., Y. Bulbul, E. Oktem, and M. Yucel. 1999. Regeneration and Agrobacterium-mediated transformation studies in tomato (Lycopersicon esculentum Miller). Tur. J. Bota. 23:345-348.
Ooms, G., A. Bakker, L. Mendijk, G. J. Wullems, M. P. Gordon, K. W. Nester, and R. A. Schilperoort. 1982. T-DNA organization in hormogeneous and heterogeneous octopine-type crown gall tissues of Nicotiana tabacum. Cell 30:589-597.
Parenicova, L., S. de Folter, M. Kieffer, D. S. Horner, C. Favalli, J. Busscher, H. E. Cook, R. M. Ingram, M. M. Kater, B. Davies, G. C. Angenent, L. Colombo. 2003. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell.15:1538-51.
Park, S. H., JL. Morris, J. E. Park, KD. Hirschi, and RH. Smith. 2003. Efficient and genotype-independent Agrobacterium-mediated tomato transformation. J. plant. Physiol. 160:1253-1257.
Prakash, C.S., and U. Varadarajan. 1992. Genetic transformation of sweet-potato by particle bombardment. Plant Cell Rep. 11:53-57.
Rech, E. L., M. H. Vainstein, and M. R. Davey. 1991. An electrical particle acceleration gun for gene transfer into cells. Technique 3:143-149.
Reggiardo, M.I., J. L. Arana, L. M. Orsaria, H. R. Permingeat, A. Spitteler, and R. H. Vallejos. 1991. Transient transformation of maize tissues by microprojectile bombardment. Plant Sci. 75:237-243.
Roest, S., and L. J. W. Gilissen. 1993. Regeneration from protoplasts- a supplementary literature review. Acta Bet. Need. 42:1-23.
Sanford, J. V., F. D. Smith, and J. A. Russell. 1993. Optimising the biolistic process for different biological applications. Methods Enzymol. 217:483-509.
Shibata, D. and Y. G. Liu. 2000. Agrobacterium-mediated plant transformation with large DNA fragments. Trends Plant Sci. 5:354-7.
Shizuya, H., B. Brieen, U. J. Kim, V. Mancino, T. slepak, Y. Tachiiri, and M. Simon. 1992. Clonging and stable maintenance of 300 kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci USA. 89:8794-8797
Song, J., J.M. Bradeen, S. K. Naess, J.P. Helgeson, and J. Jiang. 2003. BIBAC and TAC clones containing potato genomic DNA fragments larger than 100 kb are not stable in Agrobacterium. Theor. Appl. Genet. 107:958–964.
Song, J., F. Dong, J. W. Lilly, R. M. Stuper, J. Jiang. 2001. Instability of bacterial artificial clones containing tandemly repeated DNA sequence. Genome 44:463-469.
Southgate, E. M., M. R. Davey, J. B. Power, and R. Marchant. 1995. Factors affecting the genetic engineering of plants by microprojectile bombardment.. Bio. Adv. 13:631-651.
Taylor, N.J., and C. M. Fauquet. 2002. Microparticle bombardment as a tool in plant science and agricultural biotechnology. DNA and Cell Biology 21:963-977.
Tao, Q., A. Wang, and H. B. Zhang. 2002. One large-insert plant-transformation-competent BIBAC library and three Bac libraries of japonica rice for genome research in rice and other grasses. Theor. Appl. Genet. 105:1058-1066.
Tao, Q., and H. B. Zhang. 1998. Cloning and stable maintenance of DNA fragments over 300 kb in Escherichia coli with conventional plasmid-based vector. Nucl. Aci. Res. 21: 4901-4909.
Twell, D., T. M. Klein, M. E. Fromm, and S. McCormick. 1989. Transient expression of chimeric genes delivered into pollen by microprojectile bombardment. Plant Physiol. 91:1270-1274.
Tzfira, T., and V. Citovsky. 2006. Agrobacterium-mediated genetic transformation of plants : biology and biotechnology. Cur. Opi. Bio. 17:147-154.
Tzfira, T., L. Frankmen, M. Vaidya, and V. Citovsky. 2003. Site-specific intermediates. Plant Physiol. 2003. 133:1011-1023.
Tzfira, T., J. Li, B. Citovsky, and V. Citovsky. 2004. Agrobacterium T-DNA integration: molecules and models. Trends Genet. 20:375-383.
Vaneck, J. M. A. D. Blowers, and E. D. Earle. 1995. stable transformation of tomato cell-cultures after bombardment with plasmid and YAC DNA. Plant Cell Rep. 14:299-304.
Vaucheret, H., C. Beclin, T. Elmayan, F. Feuerbach, C. Godon, and J. B. Morel. 1998. Transgene-induced gene silencing in plants. Plant J. 16:651–659.
Wang, W. C., and Z. H. Liu. 1999. Harpinpss-Induced peroxidase and lignin accumulation in tobacco during the hypersensitive response. Aust. J. plant physiol. 26:265-272.
Williams, R. S., S. A. Johnston, M. Reidy, M. J. DeVit, S. G. McElligott, and J. C. Sanford. 1991. Introduction of foreign genes into tissues of living mice by DNA-coated microprojectiles. Proc. Nail. Acad. Sci. USA. 88:2726-2730.
Xu, X., and B. Li. 1994. Fertile transgenic indica rice plants obtained by electroporation of the seed embryo cells. Plant Cell Rep. 13:237-242.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top