跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/08 18:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林映綾
研究生(外文):Ying-Ling Lin
論文名稱:叢枝菌根菌之孢子發芽因子及接種對絲瓜生長與根瘤線蟲之影響
論文名稱(外文):Factors affecting germination of arbuscular mycorrhizal fungi, and interactions of AMF and root-knot nematode on sponge gourd
指導教授:劉景平劉景平引用關係程永雄程永雄引用關係
指導教授(外文):Ching-Ping LiuYung-Hsiung Cheng
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:農學研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:107
中文關鍵詞:叢枝菌根菌孢子發芽南方根瘤線蟲絲瓜
外文關鍵詞:Arbuscular mycorrhizal fungi (AMF)germinationMeloidogyne nicognitasponge gourd
相關次數:
  • 被引用被引用:1
  • 點閱點閱:964
  • 評分評分:
  • 下載下載:119
  • 收藏至我的研究室書目清單書目收藏:1
本研究旨在應用濾膜孢子發芽法探討影響叢枝菌根菌孢子發芽之因子,以及絲瓜接種叢枝菌根菌對根瘤線蟲之耐病性。孢子發芽試驗供試叢枝菌根菌有Acaulospora morrowiae (Am)、A. scrobiculata (As)、Entrophospora kentinensis (Ek)、Glomus aggregatum (Ga)、G. etunicatum (Ge)、G. mosseae (Gm)及Scutellospora spp. (Scu. spp.)等7菌種。4 ℃與室溫儲存對叢枝菌根菌Ge、Gm、Ga及As之孢子活力與發芽,在64週內並沒有明顯差異,除了Ga外,其餘三個菌種之孢子發芽率均隨著儲存時間增加而降低,As應用濾膜孢子發芽法對其發芽並不理想。比較一般河砂、蛭石、根基旺、滿地王及泥炭苔等介質對儲存2.5與1年之Ge、Gm、As及Ek孢子發芽影響,結果顯示不論儲存時間,Ge、Gm之孢子在蛭石之發芽率最高,As與Ek發芽情形則仍不理想,但是比較當年度生產並儲存三個月之Am、As、Ek、Ga、Ge及Gm,除了As、Gm外,其餘菌種孢子在蛭石之發芽率較高,在蛭石中可以發芽之菌種,發芽管之最大長度與分枝數目也較高。河砂顆粒大小與包埋深度對Ge菌種孢子發芽也有影響,包埋深度在1公分,以40孔目河砂之發芽率達28.3 %最高,其次為60孔目河砂達26.7 %,包埋深度在6公分,則以20 孔目河砂之發芽率達41.7 %為最高,其餘處理發芽率在20-21.7 %之間;Gm之孢子包埋於1公分深,發芽管長度會隨著河砂顆粒越細而減少,但分枝數目則增加,不論河砂顆粒大小,孢子以包埋於1公分深較包埋於6公分深有較高的發芽率;Am、As、Ek、Ga、Ge、Gm及Scu. Spp.等菌種之孢子,分別包埋於40孔目河砂、泥炭苔、3號根基旺及2號蛭石中,其中Am、Ek、Ga及Ge在40孔目河砂之發芽率最高,Gm則以在蛭石中發芽率最高,Scu. Spp.則以在3號根基旺有最高之發芽率,As在四種介質均未發芽。一般河砂、20、40、60孔目及2號蛭石分別作為繁殖Ge之介質,接種14週後百喜草菌根形成率,以一般河砂處理最高,其次為蛭石,但是每百毫升介質孢子數以蛭石最高達21,000個。Ek孢子包埋於一般河砂後,分別加入消毒之2號蛭石、3號根基旺、3號滿地王及泥炭苔過濾液,其中以添加3號根基旺與2號蛭石之過濾液,孢子發芽率分別為58與50.2 %,較對照組之46.1 %為高,加入滿地王與泥炭苔過濾液,發芽率則較對照組低,分別為21.2與30.5 %,但是發芽管分枝數目則以對照組最高達4.3枝,其次為添加蛭石過濾液之處理達3.9枝;河砂中硫銨添加量超過0.467 g/kg 、尿素2.18 g/kg 或磷礦石粉0.5 g/kg時明顯降低Gm孢子之發芽率,其中以增加硫銨用量抑制孢子發芽最明顯,過磷酸鈣用量在0.25 g/kg與1 g/kg,發芽率分別為16.7與18.3 %,與對照組之18.3 %沒有明顯差異,在Gm玉米盆栽試驗中,每公斤河砂分別添加1.09 g、1.63 g、2.17 g尿素與2.38 g、3.57 g、4.76 g硫銨,與添加1.5 g 3號奧妙肥及完全未添加肥料之處理進行產孢比較,接種後14週,以添加3.57 g與4.76 g硫銨之處理孢子數最高;同樣Gm玉米盆栽試驗,每公斤河砂分別添加2、4、6 g之過磷酸鈣與磷礦石粉,與添加1.5 g 3號奧妙肥及完全未添加肥料之處理進行產孢比較,其中以6 g磷礦石粉處理孢子量最高;3.57 g/kg硫銨、2.17 g/kg尿素、6 g/kg磷礦石粉單獨或混合施用,對盆栽玉米Gm產孢以單獨施用硫銨處理最高,其次為硫銨加磷礦石粉之處理,單獨施用尿素或尿素加磷礦石粉之處理則未有孢子產生;在盆栽百喜草試驗,以施用1.5 g/kg 3號奧妙肥為對照組,其孢子量最高每百公克達3823.3個,其次為單獨施用硫銨處理之2211.1個,單獨施用磷礦石粉之處理產孢最少僅276.7個。
叢枝菌根菌Am、As、Ek、Ga、Ge及Gm分別於絲瓜催芽後種植於穴盤並同時接種,2週及3週後,各菌種對絲瓜生長皆有促進效果;接種後6週,株高、地上部乾重、根系鮮重、根系乾重與感染率,以接種As之處理較佳;線蟲最初感染源密度試驗為接種200、400、600、800及1000隻二齡幼蟲,接種6週後結果顯示,各處理間根群生長有明顯差異,接種200隻即有根瘤形成,400隻則使根系根瘤數達30個以上,根鮮重為36.2 g和對照組26.2 g有顯著差異,故以400隻二齡幼蟲作為接種量;叢枝菌根菌與根瘤線蟲混合接種試驗,單獨接種線蟲者根系生長較少且根瘤數達50個以上,混合接種之植株根系皆較對照組與單獨接種線蟲者茂盛,罹根瘤數皆為30個以下,顯示對根瘤線蟲感染有減少之效果,接種Am、As、Ge及Gm菌種之植株,土壤中所含二齡幼蟲數量也相對減少;As與根瘤線蟲交互接種試驗中,亦以接種As者在株高及鮮重分別為201.5 cm及58.7 g最高,混合接種As及線蟲者之195.2 cm、54.1 g次之,根系生長以接種線蟲的根系鮮重8.28 g及乾重1.54 g最重,根瘤數均為50個以上,根瘤指數達4,而混合接種處理之根系乾重、根系鮮重分別為7.41 g和1.32 g,根瘤數30個以下,根瘤指數介於2-3之間,皆與對照組之6.76 g及1.19 g有顯著差異,每百公克乾土中南方根瘤線蟲二齡幼蟲數量,單獨接種線蟲者為16隻,較混合接種之9隻為高;於分根法(Split-root)試驗中得知,接種叢枝菌根菌促進絲瓜根系生長為系統性作用,兩邊分別接種As及線蟲者,根瘤數少於單邊接種線蟲者,且土壤中二齡幼蟲量亦有減少的現象。接種叢枝菌根菌使絲瓜根系中南方根瘤線蟲量減少之原因推測除了可能為侵染點之佔據,亦有可能為植株生理生化上的改變,因而使線蟲侵入減少,根瘤數亦減少,進而降低其土壤中之族群數量。
This study focused on the influence of factors on spores germination of arbuscular mycorrhizal fungi (AMF) by membrane filter technique, and the application of AMF for enhancing the tolerance of sponge gourd to root-knot nematode. There were 7 species of AM fungi to be twsted; that was Acaulospora morrowiae (Am), A. scrobiculata (As), Entrophospora kentinensis (Ek), Glomus aggregatum (Ga), G. etunicatum (Ge), G. mosseae (Gm) and Scutellospora spp. (Scu. spp.). Spore viability and germination of Ge, Gm, Ga, and As were not significantly different in 64 weeks stored in 4 ℃and room temperature after gathering. Percentage of spore germination rate decreased following the storage time increased in 4 species except Ga, and membrane filter technique was not adequate for germination of As. The effected of sand, vermiculite #2, king gardening #3 and flora pleur #3 on spore germination of As, Ek, Ge and Gm stored 1- and 2.5- year were compared, results indicated germination rate of Ge, Gm was the highest in vermiculite independented on storage time, and germination rate was still not well for As and Ek, but spore germination of Am, Ek, Ga and Ge stored for 3 months were higher in vermiculite than in other media except As and Gm, the length and branch of germination tube were higher in vermiculite than in other media. Particle size of sand and embedded depth affected the spore germination of Ge; embedded in 1 cm depth, the germination rate was 28.3 % in 40 mesh sand, next was 26.7 % in 60 mesh sand; embedded in 6 cm depth, germination rate was the highest, up to 41.7 % in 20 mesh sand, and 20-21.7 % in the other 3 treatments; for spores of Gm embedded in 1 cm depth, the length of germination tube decreased but branch increased following the particle size of sand decreased, germination rate of spores embedded in 1 cm depth was higher than in 6 cm depth independented of the size of sand. Germination rate of 7 species of AM fungi embedded in 4 media were compared, resulted indicated germination rate was higher for Am, Ek, Ga and Ge in 40 mesh sand, for Gm in vermiculite, for Scu. spp. in king gardening #3, and there was no germination for As in 4 media. Sand, 20 mesh, 40 mesh, 60 mesh sand, and vermiculite #2 were used for the propagation of Ge, colonization was the highest in sand at 14 weeks after inoculation, next was vermiculite, but spores per 100 ml medium was the highest and up to 21,000 in vermiculite. Filtration of vermiculite #2, KG #3, FP #3 and peat moss were added in sand where spores of Ek embedded, germination rate was 58 and 50.2 % in sand added with filtration of KG #3 and vermiculite #2, respectively, check was 46.1 %, and 21.2, 30.5 % for FP #3 and Peat moss, but the branch of germination tube was up to 4.3 for check, next was 3.9 for vermiculite filtration. Germination rate of Gm obviously decreased in sand when the amount was over 0.467 g, 2.18 g and 0.5 g/kg for ammonia sulfate, urea and rock phosphate, respectively; inhibition of germination was more obviously followed by the amount of ammonia sulfate increased, there was no significantly different in germination of Gm between check and those amended with 0.25, 1 g/kg of calcium superphosphate. For Gm propagation in corn pot culture, nitrogen amendment such as ammonia sulfate could increased the sporulation of Gm, but phosphate amendment such as rock phosphate or calcium superphosphate had no obvious increased, nitrogen and phosphate amended single or mix had different effected for Gm propagation in pot culture with corn or grass, ammonia sulfate was better for sporulation than other treatments in corn pot culture, but osmocote #3 was better in bahia-grass pot culture.
Growth promotion of sponge gourd inoculated with Am, As, Ek, Ga, Ge and Gm were compared, and growth of seedlings were promoted at 2 and 3 weeks after inoculation. Length and dry weight of shoot, fresh and dry weight of roots and colonization of seedlings inoculated with As were better than other treatments at 6 weeks after inoculation. The minimal inoculum density of root-knot nematode inducing disease symptom were tested, inoculum density were 0, 200, 400, 600, 800 and 1000 of second stage larvae of root-knot nematode in each pot. Results showed that the growth of root was significantly different in treatments at 6 weeks after inoculation. Root knots were induced when seedlings inoculated with 200 larvae per seedling, whereas there were more than 30 root knots in treatment of 400 larvae, fresh weight of root was 36.2 g and significantly different to control (CK) 26.2 g. The growth and disease incidenced of seedlings pre-inoculated with AMF for 2 weeks and then inoculated with 400 larvae of M. incognita were tested. There were over 50 root knots in seedlings inoculated with nematodes, and root growth of those inoculated with nematodes was less than control (CK). Root growth of seedlings co-inoculated with AMF and nematode was better than those of nematode alone, and root knots were less than 30. The results showed that sponge gourd pre-inoculated with AMF cound reduced the infection of M. incognita. The number of larvae per 100 g soil in treatments inoculated with Am, As, Ge and Gm also decreased. In co-inoculation tested of As and roo-knot nematode, length and fresh weight of shoots in treatment of As was 201.5 cm and 58.7 g, respectively, next was 195.2 cm and 54.1 g in treatment of As and Mi. Fresh and dry weight of root in treatment of Mi was 8.28 g and 1.54 g, respectively. It was more than 50 root knots in roots of Mi, and root knot index was up to 4, but fresh and dry weight in roots of As and Mi was 7.41 g and 1.32 g, respectively, the number of root knots was under 30 and root knot index was between 2-3. Fresh and dry weight of roots in Mi was significantly different with the control (CK) which was 6.76 g and 1.19 g. The number of 2nd larvae per 100 g soil in treatment of Mi was 16, and higher than the treatment of As and Mi which was 9. In split-root experiment, result showed that root growth promotion of sponge gourd inoculated with AM fungi was systemic. Root knots and 2nd larvae were less in seedlings which separately inoculated with As and root knot nematode in both sides than those inoculated with nematode in one side. Results indicated that sponge gourd inoculated with AM fungi might reduced the number of M. incognita due to occupation of infecting site, and physiological biochemistry of plants might change as well, therefore, the number of root knots and the population of 2nd larva in soil decreased.
中文摘要........................... I
英文摘要........................... IV
目次........................... VII
圖次........................... X
表次........................... XII
前言........................... 1
前人研究........................... 3
一、絲瓜簡介........................... 3
(一)生長特性........................... 3
(二)產業概況........................... 3
(三)功用........................... 3
(四)主要病害.......................... 4
二、根瘤線蟲簡介........................... 4
(一)分類地位........................... 4
(二)分佈及寄主範圍........................... 4
(三)生活史........................... 5
(四)病徵........................... 6
(五)防治方式........................... 6
三、叢枝菌根菌簡介........................... 6
(一)分類地位........................... 7
(二)形態構造........................... 7
(三)菌根之形成........................... 8
(四)影響孢子發芽及菌根感染之因子...................... 9
(五)菌根形成對宿主植物之效益.......................... 11
材料與方法........................... 15
一、影響叢枝菌根菌孢子發芽與活力之因子.................. 15
(一)供試叢枝菌根菌菌株來源與繁殖....................... 15
(二)試驗介質處理........................... 15
(三)孢子處理........................... 15
(四)孢子發芽觀察與活力測試........................... 16
(五)菌根形成率調查........................... 17
(六)儲存溫度與時間對叢枝菌根菌孢子活力及發芽之影響..... 17
(七)介質種類對叢枝菌根菌孢子發芽之影響................ 17
(八)不同介質對6種叢枝菌根菌孢子發芽之影響.............. 18
(九)河砂顆粒大小與包埋深度對叢枝菌根菌Ge及Gm孢子發芽之影響........................... 18
(十)40 mesh河砂及3種栽培介質對7種叢枝菌根菌孢子發芽之影響........................... 19
(十一)河砂顆粒大小與蛭石對Ge在百喜草上繁殖之影響...... 19
(十二)不同介質濾出液對叢枝菌根菌Ek孢子發芽之影響...... 19
(十三)氮、磷肥添加量對叢枝菌根菌Gm孢子發芽率之影響.... 20
(十四)氮、磷肥添加量對叢枝菌根菌Gm繁殖之影響........... 20
(十五)氮、磷肥單獨或混合施用對叢枝菌根菌Gm於玉米與百喜草上繁殖之影響........................... 21
二、叢枝菌根菌與南方根瘤線蟲於絲瓜之交互作用............ 21
(一)供試植株........................... 21
(二)供試叢枝菌根菌菌種........................... 22
(三)供試南方根瘤線蟲蟲源及其培養....................... 22
(四)根組織透化染色及叢枝菌根菌感染率之調查方法......... 22
(五)不同叢枝菌根菌對絲瓜苗生長促進效果之比較.......... 23
(六)南方根瘤線蟲最適接種量測定......................... 23
(七)不同叢枝菌根菌與南方根瘤線蟲單獨或混合接種對絲瓜生長之影響........................... 24
(八)叢枝菌根菌A. scrobiculata與南方根瘤線蟲單獨或混合接種對絲瓜生長之影響........................... 25
(九)應用分根法測定叢枝菌根菌A. scrobiculata與南方根瘤線蟲在絲瓜之相互作用........................... 25
結果........................... 26
一、影響叢枝菌根菌孢子發芽與感染之因子.................. 26
(一)儲存溫度與時間對叢枝菌根菌孢子活力及發芽之影響..... 26
(二)不同種叢枝菌根菌儲存時間對其孢子活力及發芽之影響.... 31
(三)介質種類對叢枝菌根菌孢子發芽率之影響............... 31
(四)河砂顆粒大小及包埋深度對叢枝菌根菌Ge和Gm孢子發芽之影響........................... 35
(五)40 mesh河砂及3種栽培介質對7種叢枝菌根菌孢子發芽率之影響........................... 35
(六)叢枝菌根菌Ge於不同顆粒大小河砂與蛭石中之繁殖比較... 40
(七)不同介質濾出液對叢枝菌根菌Ek孢子發芽之影響........ 40
(八)氮、磷肥添加量對叢枝菌根菌Gm孢子發芽率之影響....... 44
(九)氮、磷肥添加量對叢枝菌根菌Gm繁殖之影響............. 44
(十)氮、磷肥單獨或混合施用對叢枝菌根菌Gm於玉米與百喜草上繁殖之影響........................... 51
二、叢枝菌根菌與南方根瘤線蟲於絲瓜之交互作用............ 54
(一)不同叢枝菌根菌對絲瓜苗之生長促進效益............... 54
(二)南方根瘤線蟲之最適接種量........................... 60
(三)不同叢枝菌根菌與南方根瘤線蟲混合接種對絲瓜生長之影響........................... 65
(四)叢枝菌根菌A. scrobiculata與南方根瘤線蟲單獨或混合接種對絲瓜生長之影響........................... 72
(五)應用分根法測定叢枝菌根菌A. scrobiculata與南方根瘤線蟲在絲瓜之相互作用........................... 72
討論........................... 82
結論........................... 89
參考文獻........................... 91
王均琍。1989。內生菌根對紅豆生長及產量之影響。中華農學會報 新 148:67-80。
王均琍。1992。紅豆內生菌根菌生理之研究。國立中興大學植物學研究所博士論文。pp. 121。
王均琍。1996。囊叢枝內生菌根菌對洋蔥生長及產量之影響。中華農學會報 174:56-71。
王均琍、陳昇明。1997。影響繡球孢子屬叢枝內生菌根菌孢子萌芽之因素。中華真菌學會會刊 12:109-116。
王均琍。1998。紅豆接種叢枝內生菌根菌對乾旱逆境之反應。中華農學會報 181:92-101。
王銀波、趙震慶、張萬鳳。1988。重金屬-菌根菌-作物之關係Ⅱ重金屬及菌根對砂耕作物吸收大量元素之影響。農林學報 37:151-166。
王銀波、趙震慶。1989。重金屬-菌根菌-作物之關係Ⅳ重金屬及囊泡叢枝菌根對砂耕作物吸收微量元素之影響。農林學報 38:105-120。
王銀波、趙震慶。1992。囊叢枝菌根與重金屬對土耕大豆吸收磷與重金屬之影響。中華農學會報 157:6-20。
王國強。1989。台灣的根瘤線蟲病害。植物線蟲病害防治研討會專集 pp. 1-14。
古德業。2003。永續管理植物保護成果與衝擊。植物保護學會特刊 新五號 (植物保護管理永續發展研討會專刊) pp. 1-22。
呂斯文。1994。叢枝菌根菌之無土介質接種,接種源生產及菌種篩選研究。台灣大學園藝所博士論文。
呂斯文。1996。內生菌根與栽培耕作逆境 (上)。自然農法 2:30-37。
呂斯文、張喜寧。1998。菌根菌與土壤微生物間之交互作用。科學農業 46:217-225。
呂斯文、張簡秀容、張喜寧。1995。利用穴植盤培育番茄菌根苗及其田間生長之反應。中國園藝 41:54-67。
吳繼光、林素禎。1998。臺灣內生菌目及繡球菌目之分類學研究。囊叢枝內生菌根菌應用技術手冊。行政院農業委員會農業試驗所印行。p. 41。
吳繼光、林淑媛、林素禎。2000。殺草劑因子對叢枝內生菌根菌族群變動之影響。中華農業研究 49:42-49。
林素禎、吳繼光、吳國典、林妙玲、陳文輝。1999。香水百合鱗片之農藥及肥料處理對於叢枝菌根菌接種之影響。中華農業研究 48:128-134。
林子超。2004。菌根菌與植物的互利共生。自然保育季刊 45:23-28。
邱郁月。1995。叢枝菌根菌對菊花生長與開花之影響。台灣大學園藝所碩士論文。
胡弘道。1990。囊叢枝內生菌根。林木菌根。台灣 : 千華出版公司。pp. 244-492。
俞淑貞。2000。殺菌劑對苦瓜菌根植株感染率生長及產量之影響。國立屏東科技大學熱帶農業研究所碩士論文。
柯勇。2000。植物病原性線蟲。作物病害與防治。台北台灣:藝軒圖書出版社。pp.122-139。
徐壽長。2000。藥用植物學。台北台灣 : 山東科學技術出版社。p.111。
徐世典、張東柱、張清安、蔡進來、蔡東纂。2002。臺灣植物病害名彙。pp.156-157。
陳泰安、張喜寧。1994。囊叢枝菌根菌分類簡史及其生產與運用。科學農業 42:284-296。
陳銘森、洪欽祥。1994。內生菌根菌在園藝作物上應用之經驗談。微生物肥料之開發與利用研討會。pp. 38-39。
陳建忠。1996。囊叢枝菌根對幾種觀賞植物生長及產花量之影響與應用潛能。台灣大學園藝所碩士論文。
許書國。1990。三種囊叢枝菌根菌之孢子發芽試驗,綠蘆筍新雜交品系之生長評估與菌根反應。國立台灣大學碩士論文。
張喜寧。1992。台灣園藝囊叢枝菌根之研究與展望。科學農業40:45-52。
莊明富、程永雄。2005。接種期對叢枝菌根菌繁殖與溫度對孢子發芽之影響。台灣農業研究 54:184-194。
梁鶚、簡芙蓉。1998。絲瓜。瓜類栽培。豐年叢書HV #761-9。pp. 154-174。
曾顯雄。1989。線蟲之生物防治趨勢。植物線蟲病害防治研討會專集 pp. 43-60。
黃萬榮、秦岭、柳振亮。1995。石咸地上菌根苹果苗的生長表現。中國果樹 4:23-24。
程永雄、陳紹崇、杜金池。1986-1987。內生菌根菌在蘆筍育苗上之應用。台灣蘆筍研究報告 75-76. pp. 131-139。
程永雄、杜金池。1989。線蟲與其他病原之複合感染。植物線蟲病害防治研討會專集 pp. 61-70。
程永雄、莊明富、杜金池。1992。內生菌根菌對作物土傳病害之防治效應。病蟲害非農藥防治技術研討會專刊pp. 209-220。
程永雄、莊明富、杜金池。1993。內生菌根菌Glomus clarm應用在洋香瓜生產上之效益評估。中華農業研究 42:74-84。
程永雄、莊明富、許淑麗。1997。囊叢枝菌根菌對柑橘生長之效應。中華農業研究46:324-332。
程永雄、莊明富、蔡東纂。2001。洋香瓜囊叢枝內生菌根菌與根瘤線蟲之相互關係。植物病理學會刊 10:19-26。
鄔家琪、張喜寧。2001。叢枝菌根菌與磷肥對數種葉菜類硝酸根離子含量之影響。科學農業 49:238-244。
楊秋忠。2003。微生物肥料之開發與應用。植物保護學特刊 新五號 (植物保護管理永續發展研討會專刊) pp. 259-266。
楊秋忠。2004。微生物肥料在葡萄果園之應用。葡萄栽培技術研討會專集。pp. 55-67。
楊秋忠、莊作權、郭鴻裕。1984。接種內生菌根對大豆生長、產量、固氮作用及礦物磷利用之效應。中華農學會報 新 128:29-41。
楊秋忠、趙震慶、張永輝。1986。台灣酸性土壤接種叢枝菌根菌及施用磷礦石粉對玉米生長之影響。中華農學會報 136:15-24。
楊偉正、蕭吉雄、黃秋雄、劉邦基。2002。絲瓜新品種台農一號之育成。中華農業研究 51:37-48。
楊坤忠、張喜寧。2001。叢枝菌根對茄子穴盤育苗及田間生長之影響。中國園藝 47:175-184。
鄔家琪、張喜寧。叢枝菌根菌與磷肥對數種葉菜類硝酸根離子含量之影響。科學農業 49:238-244。
劉美玲、張喜寧。1986。內生菌根與植物病原菌之相關關係。中國園藝 32:205-213。
蔡東纂。1989。線蟲與作物根系保全。植物線蟲病害防治研討會專集 。 p. 71-92。
戴振洋、陳俊位、蔡宜峰。2001。叢枝菌根在茄子上之作用。中國園藝 47:165-174。
戴順發、黃祥益、陳昱初、陳明昭。2006。絲瓜栽培及病蟲害防治技術。高雄區農技報導。台灣:行政院農業委員會高雄區農業改良場。
蕭吉雄、楊偉正。1993。主要瓜類蔬菜(胡瓜、絲瓜、苦瓜)四十年來之發展。台灣蔬菜產業演進四十年專輯。台灣:行政院農委會農業試驗所。pp. 249-262。
Abbott, L. K., A. D. Robson and G. Deboer. 1984. The effect of phosphorus on the formation of hyphae in soil by the vesicular - arbuscular mycorrhizal fungus, Glomus fasciculatum. New Phytol. 97:437- 446.
Abha, M. and B. N. Shukla. 1997. Interactions between Glomus fasciculatum and Melidogyne incognita on tomato. Plant Pathol. 27:199-202.
Amijee, F., D. P. Stribey and P. B. Tinker. 1993. The development of endomycorrhizal root system. VIII. Effects of soil phosphorus and fungal colonization on the concentration of soluble carbohidrates in roots. New Phytol. 123:297-306.
An, Z. -Q. and J. W. Hendrix. 1988. Determining viability of endogonaceous spores with a vital stain. Mycologia 80:259-261.
Atimanav, G. and A. Adholeya. 2000. Effects of particle size of soil-less substrates upon AM fungus inoculum production. Mycorrhiza 10:43-48.
Azcón-Aguilar, C. and J. M. Barea. 1997. Arbuscular mycorrhizas and biological control of soil-borne plant pathogens – an overview of the mechanisms involved. Mycorrhiza 6:457-464.
Bagyarj, D. J., A. Manjunath, and D. D. R. Reddy. 1979. Interaction of vesicular-arbuscular mycorrhizal with root knot nematodes in tomato. Plant Soil 51:397-403.
Balylis, GTS. 1959. Effect of vesicular-arbuscular mycorrhizas on growth of Griselinia littoralis (Cornaceae). New Phytol. 58:274.
Biermann, B. J. and R. G. Linderman. 1983. Effect of container plant growth medium and fertilizer phosphorus on establishment and host growth response to vescular-arbuscular mycorrhizae. J. Amer. Soc. Hort. Sci. 108:962-971.
Bodker, L., R. Kjoller, K. Kristensen, and S. Rosendahl. 2002. Interactions between indigenous arbuscular mycorrhizal fungi and Aphanomyces euteiches in field-grown peas. Mycorrhiza 12:7-12.
Bolan, N. S., A. D. Robson and N. J. Barrow. 1984. Increasing phosphorus supply can increase the infection of plant roots by vesicular-arbuscular mycorrhizal fungi. Soil Biol. Biochem. 16:419-420.
Bressan, W. 2001. The interactive effect of phosphorus and nitrogen on "in vitro" spore germination of Glomus entunicatum Backer & Gerdemann, root growth and mycorrhizal colonization. Brazil. J. Mycrobiol. 32:276-280.
Campubrí, A., J. Pinochet, C. Calvet, and V. Estaún. 1993. Effects of the root-lesion nematode Pratylenchus vulnus and the arbuscular mycorrhizal fungus Glomus mosseae on the growth of three plum rootstocks. Plant Soil 153:223-229.
Carling, D. E., R. W. Roncadori, and R. S. Hussey. 1996. Interaction of arbuscular mycorrhizae, Meloidogyne arenaria, and phosphorus fertilization on peanut. Mycorrhiza 6:9-13.
Chabot, S., G. Bécard and Y. Piché. 1992. Life cycle of Glomus intraradix in root organ culture. Mycologia 84:315-321.
Clapperton, M. J. and D. M. Reid. 1992. A relationship between plant growth and increasing VA mycorrhizal inoculum density. New Phytol. 120:277-234.
Clark, R. B. 1997. Arbuscular mycorrhizal adaptation, spore germination, root colonization, and host plant growth and mineral acquisition at low pH. Plant and Soil 192:15-22.
Cordier, C., M. J. Pozo, J. M. Barea, S. Gianinazzi, and V. Gianinazzi-Pearson. 1998. Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. MPMI. 11:1017-1028.
Diedhiou, P. M., J. Hallmann, E. C. Oerke, and H. W. Dehne. 2003. Effects of arbuscular mycorrhizal fungi and a non-pathogenic Fusarium oxysporum on Meloidogyne incognita infestation of tomato. Mycorrhiza 13:199-204.
Dixon, R. K., H. E. Garrett, and G. S. Cox. 1988. Cytokinins in root pressure exduate of Citrus jambhiri Lush. Colonized by vesicular-arbuscular mycorrhizae. Tree physiol. 4:9-18.
Douds, D. D. and N. C. Schenck. 1990. Germination and hyphal growth of VAM fungi during and after storage in soil at five materic potentials. Soil Biol. Biochem. 23:177-183
Douds, D. and N. Schenck. 1991. Germination and hyphal growth of VAM fungi during and after storage in soil at five matric potentials. Soil Biol. Biochem. 23:177-183.
Dounds, DD. Jr. and NC. Schenck. 1990. Increase sporulation of vesicular-arbuscular mycorrhizal fungi by mainpulation of nutrient regimes. Appl. Environ. Microbiol. 56:413-418.
Dropkin, V. H. 1980. Introduction to Plant Pathology. John Wiley and Jons Inc. New York. p.293.
Eissenback, J. D. 1985. Detailed morphology and anatomy of second-stage juveniles, males, and females of the genus Meloidogyne (Meloidogyne spp.) In: An advanced treatise on Meloidogyne. Vol. I. Biology and control. Sasser, J. N. and Carter, C. C. eds., North Carolina State University Press. pp. 47-77.
Elias, K. and G. Safir. 1987. Hyphal elongation of Glomus fasciculatus in response to root exudates. Appl. Environ. Microbiol. 53:1928-1933.
Estaun, V., C. Calvet, and D. S. Hayman. 1987. Influence of plant genotype on mycorrhizal infection : response of three pea cultivars. Plant and Soil 103 :295-298.
Gemma, J. N. and R. E. Koske. 1988. Seasonal variation in spore abundance and dorancy of Gigaspora gigantea and in mycorrhizal inoculum potential of a dune soil. Mycologia 80:211-216.
Gerdemann, J. W. and T. H. Nicolson. 1963. Spores of mycorrhizal Endogone species extracted from soil by wetsieving and decanting. Trans. Br. Mycol. Soc. 46:235-244.
Giovannetti, M. and B. Mosse. 1980. An evaluation of techniques for measuring. VA mycorrhizal infection in roots. New Phytol. 84:489-500.
Godfrey, R. M. 1957. Studies of British species of Endogone. Ⅲ. Germination of spores. Trans. Br. Mycol. Soc. 40:203-210.
Graham, J. 1982. Effect of Citrus root exudates on germination of chlamydospores of the vesicular-arbuscular mycorrhizal fungus, Glomus epigaeus. Mycologia 74:831-835.
Harrier, L. and C. Watson. 2006. The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. New Phytol. 169:644-646.
Heijne, B., J. J. Hofstra, G. W. Heil,D. VAN Dam and R. Bobink. 1992. Effect of the air pollution component ammonium sulphate on the VAM infection rate of three heatland species. Plant Soil 144:1-12.
Hepper, C. M. 1979. Germination and growth of Glomus caledonium spores : The effects of inhibitors and nutrients. Soil Biol. Biochem. 14:269-277.
Huang, J. S. 1985. Mechanism of resistance to root-knot nematodes. In : An advanced treatise on Meloidogyne. Vol. I. Biology and control. Sasser, J. N. and Carter, C. C. eds., North Carolina State University Press. pp. 165-174.
Hussey, R. S. 1985. Host-parasiter relationships and assoicated physiological changes. In: An advanced treatise on Meloidogyne. Vol. I. Biology and control. Sasser, J. N. and Carter, C. C. eds., North Carolina State University Press. pp. 143-153.
Jung, C. and U. Wyss. 1999. New approaches to control plant parasitic nematodes. Appl. Microbiol. Biotechnol. 51:439-446.
Kellam, M. K. and M. N. Schenck. 1980. Interaction between a vescular-arbuscular mycorrhizal fungus and root-knot nematode on soybean. Phytopathol. 70:293-296.
Khan, A. H., R. Islam, S. Begum, and S. M. Hug. 1988. Mycorrhizal status of some Bangladesh soils and the effect of indigenous VA mycorrhizal fungi on the growth of rice plants. Bangladesh. J. Bot. 17:49-56.
Koide, R. T. and R. P. Schreiner. 1992. Regulation of the vesicular-arbuscular mycorrhizal Symbiosis. Ann. Rev. Plant Physoil. 43:557-581.
Koske, R. 1981. Gigaspora gigantea : observations on spore germination of a VA-mycorrhizal fungus. Mycologia 73:288-300.
Li, H. Y., G. D. Yang, H. R. Shu, Y. T. Yang, B. X. Ye, I. Nishida, and C. C. Zheng. 2006. Colonization by the Arbuscular Mycorrhizal Fungus Glomus versiforme Induces a Defense Response Against the Root-knot Nematode Meloidogyne incognita in the Grapevine (Vitis amurensis Rupr.), Which Includes Transcriptional Activation of the Class III Chitinase Gene VCH3 . Plant and Cell Physiology 47:154-163.
Linderman, R. G. 1994. Role of VAM fungi in biocontrol. In: mycorrhizae and plant health. F. L. Pfleger and R. G. Linderman, eds. APS, St. Paul. pp. 1-26.
Louis, I. and G. Lim. 1988. Effect of stroage of inoculum on spore germination of a tropical isolate of Glomus clarum. Mycologia 80:157-161.
Ma, N., K. Yokoyama and T. Marumoto. 2006. Stimulatory effect of peat on spore germination and hyphal growth of arbuscular mycorrhizal fungus Gigaspora margarita. Soil Sci. and Plant Nutrition 52:168-176.
Mankau, R. 1980. Biological control of nematode pests by natural enemics. Ann. Rev. Phytopathol. 18:415-440.
Miguel, T., I. Kenji, and M. Takayuki. 2001. Reduction of nematode damage by root colonization with arbuscular mycorrhiza (Glomus spp.) in tomato- Meloidogyne incognita (Tylenchida:Meloidogynae) and carrot- Pratylenchus penetrans (Tylenchida:Pratylenchidae) pathosystems. Appl. Entomol. Zool. 36:387-392.
Miler, J. C., J. S. Rajapakse and R. K. Garber. 1986. Vesicular-arbuscular mycorrhizae in vegetable crops. Hort. Science. 21:974-984.
Miranda, J. C. C., P. J. Harris and A. Wild. 1989. Effects of soil and plant phosphours concentrations on vescular-arbuscular mycorrhiza in sorghum plants. New Phytol. 112:405-410.
Nelsen, C. E., N. C. Bolgiano, S. C. Furutani, G. R. Safir and B. H. Zandstra. 1981. The effect of soil phosphorus levels on mycorrhizal infection of field-grown onion plants and on mycorrhizal reproduction. J. Amer. Soc. Hort. Sci. 106:786-788.
Pandey, R., M. L. Gupta, H. B. Singh, and S. Kumar. 1999. The influence of vescular-arbuscular mycorrhizal fungi alone or in combination with Meloidogyne incognita on Hyoscyamus niger L. Bioresource Technology 69:275-278.
Peña, E., S. R. Echeverría, H. Wim, H. Freitas, and M. Moens. 2006. Mechanism of control of root-feeding nematodes by mycorrhizal fungi in the dune grass Ammophila arenaria. New Phytol. 169:829-840.
Petersen, C. T., G. R. Safir, S. Parent and M. Caron. 1991. Growth of asparagus in a commercial peat mix containing vesicular-arbuscular mycorrhizal (VAM)fungi and the effects of applied phosphorus. Plant and Soil 135:75-82.
Phillips, J. M. and D. S. Hayman. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55:158-161.
Pozo, M. J., C. Cordier, E. Dumas-Gaudot, S. Gianinazai, J. M. Barea, and C. Azcón-Aguilar. 2002. Localized versus systemic effect of arbuscular mycorrhizal fungi on defence response to Phytophthora infection in tomato plants. J. Exp. Bot. 368:525-534.
Readhead, J. R. 1975. Endotrophic mycorrhiza in Nigeria : some aspects of the ecology of the endotrophic mycorrhizal association of Khaya grandifolia. In: Endomycorrhizas. Sanders F. E., Mosse B, Tinker P. B. eds. Academic, London. pp. 447-459.
Roger T. K. and B. Mosse. 2004. A history of research on arbuscular mycorrhiza. Mycorrhiza 14:145-163.
Safir, G. R., S. C. Coley, J. O. Siqueira and P. S. Carlson. 1990. Improvement and synchronization of VA mycorrhiza fungal spore germination by short-term cold storage. Soil Biol. Biochem. 22:109-111.
Saif, S. R. 1981. The influence of soil aeration on the efficiency of vesicular-arbuscular mycorrhizae. I. Effect of soil oxygen on the growth and mineral uptake of Eupatorium odoratum L. inoculated with Glomus marcrocarpus. New Phytol. 88:649-659.
Saif, S. R. 1983. The influence of soil aeration on the efficiency of vesicular -arbuscular mycorrhizas. II. Effect of soil oxygen on growth and mineral uptake in Eupatorium odoratum L., Sorghum Bicolor (L) Moench and Guizotia abyssinica (L. f.) Cass. inoculated with vesicular-arbuscular mycorrhizal fungi. New Phytol. 95:405-417.
Sanders, F. E. and N. A. Sheikh. 1983. The development of vesicular-arbuscular mycorrhizal infection in plant root system. Plant and Soil 71:223-246.
Sasser, J. N. and C. C. Carter. 1985. Overview of the International Meloidogyne Project 1975-1984. In: An advanced treatise on Meloidogyne. Vol. I. Biology and control. Sasser, J. N. and Carter, C. C. eds., North Carolina State University Graphics, Raleigh, N. C. pp.19-24.
Schenck, N. C., S. D. Graham, and N. E. Green. 1975. Temperature and light effects on contamination and spore germination of vesicular-arbuscular mycorrhizal fungi. Mycologia 67:1189-1192.
Schwab, S. M., J. A. Menge and R. T. Leonard. 1983. Comparison of stages of vesicular-arbuscular mycorrhiza formation in sudan grass grown at two levels of phosphorus nutrition. Amer. J. Bot. 70:1225-1232.
Sieverding, E. 1991. Vesicular-arbuscular mycorrhiza management in tropical agrosystems. Deutsche Gesellschaft Technische Zusammenarbeit (GTZ) GmbH, Eschborn. p.371.
Siqueira, J. Q., D. I. Hubbell and A. W. Mahmud. 1984. Effect of liming on spore germination, germ tube growth and root colonization by vesicular-arbuscular mycorrhizal fungi. Plant and Soil 76:115-124.
Siqueira, J., D. Sylvia, J. Gibson and D. Hubbel. 1985. Spores, germination, and germ tubes of vescular-arbuscular mycorrhizal fungi. Can. J. Microbiol. 31:965-972.
Smith, G. S., and D. T. Kaplan. 1988. Influence of mycorrhizal fungus, phosphorus and burrowing nematode interactions on growth of rough lemon citrus seedlings. J. Nematol. 20:539-544.
Strobel, N. E., R. S. Hussey, and R. W. Roncadori. 1982. Interactions of vicular-arbuscular mycorrhizal fungi, Meloidogyne incognita, and soil fertility on peach. Phytopathol. 72:690-694.
Sward, R. 1981. The structure of the spores of Gigaspora margarita. Ⅱ. Changes accompanying germination. New Phytol. 88:661-666.
Sylvia, D. M. and N. C. Schenck. 1983. Germination of chlamydospores of three Glomus species as affected by soil matric potential and fungal contamination. Mycologia 75:30-35.
Syliva, D. M. and L. H. Neal. 1990. Nitrogen affects the phosphorus response of VA mycorrhiza. New Phytol. 115:303-310.
Sylvia, D. M., D. O. Wilson, J. H. Graham, J. J. Maddox, P. Millner, J. B. Morton, H. D. Skipper, S. F. Wright and A. G. Jarstfer. 1993. Evaluation of vesicular-arbuscular mycorrhizal fungi in diverse plant and soils. Soil Biol. Biochem. 25:705-713.
Talavera, M., K. Itou and T. Mizukubo. 2001. Reduction of nematode damage by root colonization with arbuscular mycorrhiza (Glomus spp.) in tomato-Meloidogyne incognita (Tylenchida: Meloidogynidae) and carrot-Pratylenchus penetrans (Tylenchida: Pratylenchidae) pathosystems. Appl. Entomol. Zool. 36: 387-392.
Talavera, M., K. Itou and T. Mizukubo. 2002. Combined application of Glomus sp. and Pasteuria penetrans for reducing -Meloidogyne incognita (Tylenchida: Meloidogynidae) populations and improving tomato growth. Appl. Entomol. Zool. 37: 61-67.
Thomason, I. J. 1987. Challenges facing nematology : enviromental risks with nematodes and the need for new approaches. In: Vistas on nematology, Veech, J. A. and Dickson, D. W. eds., Hyattsville, USA, Socienty of Nematologists. pp. 469-476.
Thomson, B. D., A. D. Robson and L. K. Abbott. 1986. Effects of phosphorus on the formation of mycorrhizae by Gigaspora calospora and Glomus fasciculatum in relation to root carbohydrates. New Phytol. 103:751-765.
Tommerup, I. C. 1983. Spore dormancy in vesicular-arbuscular mycorrhizal fungi. Trans. Br. Mycol. Soc. 81:37-45.
Vaast, P., E. P. Caswell-Chen and R. J. Zasoski. 1998. Influences of a root lesion nematode, Pratylenchus coffeae, and two arbuscular mycorrhizal fungi, Acaulospora mellea and Glomus clarum on coffee ( Coffea arabica L. ). Biol. Fert. Soils 26:130-135.
Van Gundy, S. D. 1985. Ecology of Meloidogyne spp. Emphasis on environmental factors affecting survival and pathogenicity. In: An advanced treatise on Meloidogyne. Vol. I. Biology and control. Sasser, J. N. and Carter, C. C. eds., Dept. of Plant Pathology, North Carolina State University Press. pp. 177-182.
Vierheilig, H. and J. A. Ocampo. 1991. Receptivity of various wheat cultivars to infection by VA-mycorrhizal fungi as influence by inoculum potential and the relation of VAM-effectiveness to succinic dehydrogenase activity of the mycelium in the roots. Plant and Soil 133 : 291-296.
Waltrud, L., J. Heithaus and E. Jaworski. 1978. Evidence for production of inhibitor by the vesicular-arbuscular-mycorrhizal fungus Gigaspora margarta. Mycologia 70:821-828.
Wang, H., S. Parent, A. Gosselin and Y. Desjardins. 1993. Viscular-arbuscular mycorrhizal peat-based substrate enchance symbiosis establishment and growth of three micropropagated species. J. Amer. Soc. Hort. Sci. 118:896-901.
Zhu, H. H., and Q. Yao. 2004. Localized and systemic increase of phenols in tomato roots induced by Glomus versiforme inhibits Ralstonia solanacearum. J. Phytopathol. 152:537-542.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 葉連祺(2000)。中小學學校本位課程發展之意涵和取向。教師天地,103,頁21-29。
2. 曾振興(2001)。太平國小學校本位課程發展的行動探究。國教之友,52(3),29-41。
3. 陳惠邦(1999)。教育情境中的行動研究:理論與實踐經驗。載於國立中正大學教育研究所主編:教育學研究方法(頁57-75)。高雄:麗文。
4. 陳美如(1995)。躍登教師行動研究的舞台—課程行動研究初探。國民教育,35(11,12),21-28。
5. 吳明清(1997)。發展學校特色的理念與做法。北縣教育:1997,4,21-26。
6. 何福田(2004)。學校特色與自我行銷。研習資訊,21(6),1-5。
7. 蔡清田(1998)。建構主義取向的課程設計。課程與教學季刊,1(3),15-30。
8. 王均琍。1989。內生菌根對紅豆生長及產量之影響。中華農學會報 新 148:67-80。
9. 王均琍。1996。囊叢枝內生菌根菌對洋蔥生長及產量之影響。中華農學會報 174:56-71。
10. 王均琍、陳昇明。1997。影響繡球孢子屬叢枝內生菌根菌孢子萌芽之因素。中華真菌學會會刊 12:109-116。
11. 王均琍。1998。紅豆接種叢枝內生菌根菌對乾旱逆境之反應。中華農學會報 181:92-101。
12. 王銀波、趙震慶、張萬鳳。1988。重金屬-菌根菌-作物之關係Ⅱ重金屬及菌根對砂耕作物吸收大量元素之影響。農林學報 37:151-166。
13. 王銀波、趙震慶。1989。重金屬-菌根菌-作物之關係Ⅳ重金屬及囊泡叢枝菌根對砂耕作物吸收微量元素之影響。農林學報 38:105-120。
14. 王銀波、趙震慶。1992。囊叢枝菌根與重金屬對土耕大豆吸收磷與重金屬之影響。中華農學會報 157:6-20。
15. 呂斯文、張簡秀容、張喜寧。1995。利用穴植盤培育番茄菌根苗及其田間生長之反應。中國園藝 41:54-67。