跳到主要內容

臺灣博碩士論文加值系統

(100.26.196.222) 您好!臺灣時間:2024/03/01 04:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:韓錦絲
研究生(外文):Chin-Szu Han
論文名稱:番茄果實特性之全互交分析
論文名稱(外文):Genetic analysis of a 6*6 half diallel cross for tomato fruit characteristics
指導教授:劉景平劉景平引用關係
指導教授(外文):Ching -Ping Liu ph.D.
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:農學研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:106
中文關鍵詞:番茄全互交
外文關鍵詞:tomatodiallel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:541
  • 評分評分:
  • 下載下載:88
  • 收藏至我的研究室書目清單書目收藏:0
為探討番茄果實特性的遺傳行為,本試驗首先以494個自交系為材料,調查其果實的各部特性,了解其平均值與變異性,並以錘度為主,配合糖酸比、可滴定酸、色相角度、彩度和亮度,選定6個自交系為親本,進行半套的6×6全互交,總計6個親本和15個F1為材料,以RCBD、3重複進行試驗,調查錘度、單果重、糖酸比、可滴定酸、色相角度、彩度和亮度等7個特性,並利用Hayman 和Griffing的方法進行資料的統計分析。
試驗結果顯示,494個自交系在所調查的6個特性中表現相當大的變異性,其頻度分佈除了亮度較接近常態分佈外,其餘5個特性皆有一定程度的偏歪,6個特性間的相關係數,隨兩兩的組合存在極顯著、顯著或不顯著,其中錘度與可滴定酸、糖酸比呈極顯著正相關(r=0.34, r=0.55)。6×6全互交6個親本及其F1果實7個特性間之相關係數,亦隨兩兩的組合存在極顯著、顯著或不顯著,其中錘度與單果重呈極顯著負相關(r=-0.74),與可滴定酸、糖酸比則呈極顯著正相關(r=0.50, r=0.63)。
取錘度、單果重和糖酸比等3個特性進行Hayman 和Griffing的全互交分析,結果顯示3個特性的遺傳行為相當類似。
一、累加性效應在此3個果實特性的遺傳行為上佔最重要的比例,且遠遠超過顯性效應。因此,高糖度番茄育種的策略應以育成自交系品種為目標。
二、3個果實特性各別的15個F1平均值的分佈範圍,皆侷限在6個親本之間,顯性效應以不完全顯性為主,幾乎沒有完全顯性及超顯性。
三、3個果實特性的遺傳成分變方一致顯示為不完全顯性,親本間顯隱性基因頻度的分佈不均衡,顯性基因數較多,且為微效基因控制。
四、Wr/Vr圖顯示,3個果實特性有顯性效應存在,且再一次證實為不完全顯性,親本間有的顯性基因數多,有的隱性基因數多。
五、組合力分析結果顯示,3個果實特性的一般組合力皆遠大於特殊組合力,隨著親本平均的大小變動,各親本一般組合力的大小亦成正向變動,F1的特殊組合力一般較小。
3個果實特性只有在Yr 與Wr+Vr的標準化偏差圖顯現差異,其中單果重6個親本的分佈十分規則的散佈在顯性負向與隱性正向兩象限,r值極顯著,顯示顯隱性基因群與果重大小成正向分佈。錘度與糖酸比相類似,6個親本平均散佈在四個象限,r值不顯著,顯示顯性基因群並非等向分佈。
Abstract

This study was aimed at exploring the quantitative genetic characteristics of tomato fruit. A total of 494 inbred lines from the breeding program were used for the data collection and analyses of fruit characteristics including brix, titratable acid, sugar/acid ratio, hue angle, chroma and brightness. After preliminary evaluation, six best lines were selected as parents for half 6x6 diallel cross. A randomized complete block design (RCBD) with three replications was used in the experiments containing six parents and 15 F1 hybrids. Data of the fruit characteristics including brix, fruit weight, titratable acid, sugar/acid ratio, hue angle, chroma and brightness were collected for the statistic analyses following the method developed by Hayman and Griffing. Results showed that large variation was observed in the fruit characteristics data collected from the 494 inbred lines. Except fruit brightness, the frequency distributions curve of the other five characteristics were all unsymmetrical with skewness and kurtosis. The curve of fruit brightness was a typically normal distribution. A negative correlation coefficient (r=-0.74**) were observed between brix and fruit weight. Positive correlation coefficients (r= 0.55** and r=0.63**) were also observed between brix and sugar/acid ratio. These three correlation coefficients were all significant at 1% level. Both of Hayman and Griffing methods were used in the statistic analyses of brix, fruit weight and sugar/acid ratio and the quantitative genetic behavior of the three characteristics was very similar to each other. Results are summarized as follow:1. Additive effect is more than dominant effect, therefore high sugar content of tomato fruit must be put in the first priority in the breeding of inbred lines. 2. The data of the three characteristics in the 15 F1 hybrids were all ranged between the six parents. This result showed the existence of partial dominant and almost no complete dominant or super dominant was observed. 3. Analysis of the variances showed the quantitative genetic behaviors of the characteristics were partial dominant. Frequency of gene distribution is not equilibrium in the parents, more dominant genes and polygene were observed and they were controlled by minor genes. 4. Figure of Wr/Vr showed the existence of partial dominant effect. Some parents have more dominant genes and the others have more recessive genes. 5. The results is also showed that general combing ability(GCA) is much more important than specific combing ability(SCA) in the three characteristics. GCA varied positively with variation of the mean value of Parents GCA. The SCA of F1 is smaller in general. Differences of genetic phenomenon among the three characteristics was presented in the Yr and Wr+Vr standardized deviation graph. Exceptionally, fruit weight, different from the other two characteristics, brix and sugar/acid ratio, has regular plot distribution and correlation coefficient was significant at 1% level. Dominant and recessive genes were correlated to the direction of negative and positive effect. The graph of Yr and Wr+Vr standardized deviation of brix and sugar/acid ratio were very similar to each other. But, plot distributions were irregular. Dominant and recessive genes were not correlated to the direction of negative and positive effect.
目 錄
表目次……………………………………………………………… I
圖目次……………………………………………………………… I
中文摘要…………………………………………………………… 1
英文摘要…………………………………………………………… 3
壹、前言…………………………………………………………… 5
貳、前人研究……………………………………………………… 8
一、番茄起源及植株性狀………………………………… 8
二、番茄開花習性及果實發育……………………………… 9
三、番茄果實品質之構成要素……………………………… 11
四、番茄糖分之遺傳…………………………………………… 29
五、全互交分析……………………………………………… 36
叁、材料與方法…………………………………………………… 42
肆、結果…………………………………………………………… 49
一、番茄494個自交系之果實特性調查及6×6全互交之親 本選定…………………………………………………… 49
二、番茄果實特性之6×6全互交分析……………………… 59
(一)錘度的全互交分析………………………………… 61
(二)單果重的全互交分析……………………………… 72
(三)糖酸比的全互交分析……………………………… 81
伍、討論…………………………………………………………… 90
陸、參考文獻………………………………………………………… 97
柒、附錄……………………………………………………………… 106
柒、參考文獻
王仕賢、王仁晃、林棟樑、謝明憲。2004。黃色小果番茄新品種台南12號之育成。台南區農業改良場研究彙報。43:1-10.
王仕賢、鄭安秀、陳文雄。1999。小果番茄栽培管理。台南區農業改良場技術專刊。96:1-18
余涎年,吳定華,陳竹君。1997。番茄遺傳學。p:161-204。
李成章。1984。統計在遺傳育種上之應用(四)全互交分析在育種上之利用。科學農業32(1-2):1-20。
李成章。1990。全互交與組合力在育種上之應用。園藝作物育種講習會專刊。台灣省農業試驗所特刊。31:61-68。
陳正次。1988。生果蕃茄遺傳改良。蔬菜品種改良研討會。p:121 -144。
陳正次。1998。番茄育種。蔬菜育種技術研習會專刊。台灣省農業試驗所特刊。73:231-283。
陳正次。2005。番茄。台灣農家要覽農作篇(二)。豐年社。p:517-532。
郭宏遠。2002。番茄產銷概況分析。番茄品種特性與栽培技術全輯。種苗改良繁殖場。p:1-4。
劉景平。1989。落花生抗�蚽f性狀之全互交分析。嘉義農專學報。21:1-21。
蕭素碧。1987。蜀黍抗紋枯病性及其遺傳研究。國立台灣大學。p:130-138。
Ahmed, S. U. and I. Ceausescu, 1985. Inheritance of some quantitative characters in tomato. Phil. Agr. 68:425-430.
Arthur, A. Schaffer, I. Levin, I. Oguz, M. Petreikov, F. Cincarevsky, Y. Yeselson, S. Shen, N. Gilboa and M. Bar. 2000. ADPglucose pyrophosphorylase activity and starch accumulation in immature tomato fruit: the effect of a Lycopersicon hirsutum-derived introgression encoding for the large subunit . Plant Science. 152: 135-144.
Baldwin, E. A., J. W. Scott, M. A. Einstein, T. M. M. Malundo, B. T. Carr, R. L. Shewfelt and K. S. Tandon. 1998. Relationship between sensory and instrumental analysis for tomato flavor. J. Amer. Soc. Hort. Sci.. 125: 906-915.
Barten, J. H. M., Y. Elkind, J. W. Scott, S. Vidavski and N. Kedar. 1993. Diallel analysis over two environments for blossom-end scar size in tomato. Euphytica. 65:229-237.
Causse, M., V. Saliba-Colombani, I. Lesschaeve and M. Buret. 2001. Genetic analysis of organoleptic quality in fresh market tomato. 2. Mapping QTLs for sensory attributes. Theor Appl Genet. 102: 273-283.
Causse, M., V. Saliba-Colombani, L. Lecomte, P. Duffe, P. Rousselle and M. Buret. 2002. QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits. Journal of Experimental Botany Vol.53,No.377: 2089-2098.
Chetelat, R. T., J. W. DeVerna and A. B. Bennett. 1995a. Introgression into tomato (Lycopersicon esculentum.) of the L. chmielewskii sucrose accumulator gene (sucr) controlling fruit sugar composition. Theor Appl Genet. 91: 327-333.
Chetelat, R. T., J. W. DeVerna and A. B. Bennett, 1995b. Effect of the Lycopersicon chmielewskii sucrose accumulator gene (sucr) on fruit yield and quality parameters following introgression into tomato. Theor Appl Genet. 91: 334-339.
Chetelat, R. T. and E. Klann, 1993. inheritance and genetic mapping of fruit sucrose accumulation in Lycopersicon chmielewskii. The Plant Journal. 4(4):643-650.
Cuartero, J. and G. Palomares, S. Balasch, F. Nuez, 1981. Tomato fruit cracking under plastic-house and in the open air .II. general and specific combining abilities interaction genotype-environment. Genet Breed Tomato. p. 91-98
Davies, J. N. and G. E. Hobson. 1981. The constituents of tomato fruit-The influence of environment, nutrition, and genotype. Food Sci. Nutr. 15:205-280.
Daskaloff, C. and M. konstantinova, 1981. The inheritance of some quantitative characters determining tomato fruit quality in view of developing high quality lines and cultivars .Genet Breed Tomato. P.121-128.
Dick, J. A. and V. I. Shattuck. 1990. Inheritance of Resistance to Blotchy Ripening in Processing tomato. J. Amer. Soc. Hort.Sci. 115(3):503-508.
Dvora, L., M. Bar, N. Gilboa and R. Frankel.1990. Positive heterotic effects for °Brix in high solid F1 hybrid cherry tomatoes. Acta Horticulturae 277:207-209.
Edward, C. and Tigchelaar. 1986. Tomato breeding. Breeding vegetable crop. p: 135-171.
Elahmadi, A. B. and M. A. Stevens. 1979. Genetics of high temperature fruit set in tomatoes. J.Am.Soc.Hort.104:686 -691.
do Rego, E. R., F. L. Finger, V. W. D. Casali and A. A. Cardoso. 1999. Inheritance of fruit color and pigment changes in a yellow tomato(Lycopersicon esculentum Mill.)mutant. Genetics and Molecular Biology.22(1):101-104
Elliott, K J., W. O. Butler, C. D. Dickinson,Y. konno,T. s. Vedvick, L. Fitzmaurice and T. E. Mirkov . 1993. Isolation and characterization of fruit vacuolar invertase genes from two tomato species and temporal differences in mRNA levels during fruit ripening. Plant Mol. Biol. 21:515 -524.
Emery, G. C. and H. M. Munger. 1970. Effects of inherited differences in growth habit on fruit size and soluble solids in tomato. J. Am. Soc Hort. Sci. 95(4): 410-412.
Emery, G. C. and H. M. Munger. 1970. Effects of inherited differences in growth habit on pattern of harvest in tomato. J. Am. Soc Hort. Sci. 95(4): 407-410.
Fernander-ruiz, V., M. C.Sanchez-Mata, M. Camara,and M. E. Torija, .2004. Internal quality characterization of fresh tomato fruit. Hortscience. 39(2):339-345.
Georgelis, N. and J. W. Scott. 2004. Relationship of Tomato Fruit Sugar Concentration with Physical and Chemical Traits and Linkage of RAPD Markers. Amer. Soc. Hort. Sci, 129(6):839-845.
Grierson, D. and A. A. Kader. 1986. Fruit ripening and quality. The Tomato Crop. 241-275
Griffing, B. 1956. Concept of general and specific combining ability in relation to diallel crossing system. Aust. J. Biol.sci. 9:462-493
Hadas, R., A. Schaffer, D. Miron, M. Fogelman and D. Granot. 1995. PCR-generated molecular markers for the invertase gene and sucrose accumulation in tomato. Theor Appl Genet. 90: 1142-1148.
Harada, S., S. Fukuta and H. Tanaka, 1995. Genetic analysis of the trait of sucrose accumulatorin tomato fruit using molecular marker.Breeding Science. 45: 429-434.
Hayman, B. I. 1954. The analysis of variance of diallel tables. Biometrics 10: 235-244.
Hayman, B. I. 1954. The theory and analysis of diallel crosses. Genetics 39: 789-809.
Hobson, G. E., R. Nichols, J. N. Davies and P. T. Athkey, 1984. The inhibition of tomato fruit ripening by silver. Pl. physiol. 116:21-29.
Ibarbia, E. A. and V. N. Lambeth, 1969. Inheritance of souble solids in a large/small-fruited tomato cross. J. Am Soc. Hort. sci. 94:496-498.
Janoria, M. P. 1974. Sampling variation in alcohol insoluble solid content and viscosity of tomato juice . J. Hort. sci. 49:305-310.
Jinks, J. L. 1954. The analysis of continuous variation in a diallel cross of Nicotiana rustica varieties. Genetics 39:767-788.
Jones, R. M. 1965. Analysis of variance of the half diallel table. Heredity 20:117-121.
Jones, R. A. and C. O. Qualset. 1984. Breeding crops for environmental stress tolerance. P.305-340
Jones, R. A. and S. J. Scott, 1983. Improvement of tomato flavor by genetically increasing sugar and acid content. Euphytica. 32: 845-855.
Kader, A. A., M. A. Stevens, M. Albright, L. L. Morris and M. Algazi. 1977. Effect of fruit ripeness when picked on flavor and composition in fresh market tomatoes .J. Amer. Soc. Hort. Sci. 102:724-731
Kanno, T. and S. Kamimura, 1981. Fruit structure, firmness and quality, and relationships between these factors in varieties and F1 hybrids of tomatoes .Genet Breed Tomato. P. 99-119.
Ku, H.-M., S. Doganlar and K.-Y. Chen, S. D. Tanksley 1999. The genetic basis of pear-shaped tomato fruit. Theor Appl Genet. 9: 844-850.
Khudairi, A. K. 1972. The ripening of the tomato .Am. Sci. 60: 696-707.
Lambeth, V. H., E. F. Straten and M. L. Fields, 1966. Fruit quality attributes of 250 foreign and domestic tomato accessions. Univ. of Missouri, Agr. Expt. Sta Res. Bull. 908.
Lapushner, D. and R. Frankel, 1981. Parent-offspring relations for quantitative traits in a 10×10 diallel cross of fresh market tomato. Genet Breed Tomato. P.37-4392-96
Levin, I., N.Gilboa, E. Yeselson, S. Shen and A. A. Schaffer. 2000. Fgr, A major locus that modulates the fructose to glucose ratio in mature tomato fruits. Theor Appl Genet. 100: 256-262.
Lincoln, R. E. F. P. Zscheile,J. W. Porter G. w. Kohler and R. M. Caldwell. 1943. Provitamin A and vitamin C in the genus Lycopersicon. Bot. Gaz.105:113-115
Lower, R. L. and A. E. Thompson. 1967. Inheritance of acidity and solids content of small-fruited tomatoes. Proc. Amer. Soc. Hort. Sci. 91:486-494.
Lumpkin, H. 2005. A comparison of lycopene and other phytochemicals in tomatoes grown under conventional and organic management system. The World Vegetable Center. Technical Bulletin NO.34:1-48
Macgillivary, J. H. and L. J. Clemente. 1956. Effect of tomato size on solids content. Proc. Amer. Soc. Hort. Sci. 68:466-469.
Maclinn, W. A.,C. R. Fellers and R. E. Buck. 1937. Tomato variety and strain differences in ascorbic acid (vitamin C)content. Proc. Am. Soc. Hort. Sci. 34:543-552.
Maiero, M., T. J. Ng and T. H. Barksdale. 1989. Combining ability estimates for early blight resistance in tomato. J. Amer. Soc. Hort. Sci. 114(1):118-121.
Malundo, T. M. M., R .L. Shewfelt and J. W. Scott. 1995. Flavor quality of fresh tomato (Lycopersicon esculentum, Mill.) as affected by sugar and acid levels. Postharvest Biology and Technology 6:103-110.
Mather, K. V. and J. L. Jinks 1971. Biometrical Genetics. 382p. Cornell Univer. Press, Ithaca.
Petro-Turza, M. 1987. Flavor of tomato and tomato products. Food Rev.Intl. 2:309-351.
Sato, T., T. Iwatsubo, M. Takahashi, H. Nakagawa, N. Ogura and H. Mori. 1993. Intercellular localization of acid invertase in tomato fruit and molecular cloning of a cDNA for the enzyme. Plant Cell Physiol. 34: 263-269.
Shahidual, Md. Islam, T. Matsui and Y. Yoshida. 1996. Carbohydrate content and the activities of sucrose synthase, sucrose phosphate synthase and acid invertase in different tomato cultivars during fruit development. Scientia Horticulturae 65: 125-136.
Shivrina, A. N. 1937. A study of vitamin C and provitamin A(��-carotene)in tomato. Scientia Horticulturae varieties. Plant Breeding. 2: 128-141.
Stevens, M. A. and M. A. Long. 1971. Inheritance of malate in tomatoes. J. Am. Soc. Hort. Sci. 96:120-122.
Stevens, M. A. 1972. Citrate and malate concentrations in tomato fruits:genetic control and maturity effects . J. Am. Soc. Hort. Sci. 97:655-658.
Stevens, M. A. 1976. Inheritance of viscosity potential in tomato. J. Am. Soc. Hort. Sci. 101:152-155.
Stevens, M. A, A. A. Kader, M. Albright and M. Algazi. 1977. Genotypic variation for flavor and composition in fresh market tomatoes. J. Am. Soc. Hort. Sci. 102:680-689.
Stevens, M. A, A. A. Kader and M. Albright. 1979. Potential for increasing tomato flavor via increased sugar and acid content. J. Am. Soc. Hort. Sci. 104:40-42.
Stevens, M. A. 1986. Inheritance of Tomato Fruit Quality Components. Plant Breeding Reviews, 4: 273-311.
Stoner, A. K. and A. E. Thompson. 1966. The potential for selecting and breeding for solids content of tomatoes. Euphytica. 15:377-382.
Stommel, J. R. 1992. Enzymic components of Sucrose accumulation in the wild tomato species Lycopersicon peruvianum. Aplant Physiol. 99:324-328.
Stommel, J. R. and K. G. Haynes. 1993. Genetic control of fruit sugar accumulation in a Lycopersicon esculentum×L. hirsutum cross. J. Am. Soc. Hortic Sci. 118:859-863.
Tandon, K. S., E. A. Baldwin and R. L. Shewfelt. 2000. Aroma perception of individual volatile compounds in fresh tomato (Lycopersicon esculentum, Mill.) as affedted by the medium of evaluation. Postharvest Biology and Technology 20: 261-268.
Thompson, A. E., R. L. Lower and R. W. Hepler. 1964. Increasing acidity content of tomatoes by breeding and selection . Proc. Amer. Soc. Hort. Sci. 84:463-473.
Tigchelaar, E. C. and M. L. Tomes. 1974.’Caro-Rich’ tomato. Hort. Sci. 9: 82.
Tigchelaar, E. C., W. B. McGlasson, and R. W. Buescher, 1978. Genetic regulation of tomato fruit ripening. Hort. Sci. 13: 508-513.
Walkof, C. and R. B. Hyde. 1963. Inheritance of acidity in tomatoes. Can. J. Plant Sci. 48:528-533.
Yassin, T. E. 1988. Inheritance of three agronomic characters in Lycopersicon interspecific crosses. J. Agric. Sci. Camb. 110:471-474.
Yelle, S., R. T. Chetelat, M. Dorais, J. W. De Verna and A. B. Bennett. 1991. Sink metabolism in tomato fruit. Plant Physiol. 95:1026-1035.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 吳宗立(2003)。中小學鄉土教育的教材設計與實施。國教天地,153,13-19。
2. 王啟宗(1989)。談國小社會科鄉土教材教學。國教輔導,28(3),4-11。
3. 方德隆(2001)。學校本位課程發展的理論基礎。課程與教學季刊,4(2),1-24。
4. 吳明隆(2003)。鄉土教育網路教材的發展建置。國教天地,153,29-38。
5. 李新鄉(2003)。國小校長轉型中的課程領導-理念到實際間的初步檢視。教育研究月刊,113,30-44。
6. 周淑卿(2000)。中小學鄉土教育的問題與展望。課程與教學,3(3),91-101。
7. 周蓮清(1999)。鄉土教育與九年一貫課程。國教輔導,38(4),12-16。
8. 林進生(2002)。鄉土教育的策略與實務分享。屏縣教育季刊,9 ,13-17。
9. 林瑞榮(2000)。國小鄉土教材的評鑑與設計。課程與教學季刊3(3),73-90。
10. 范熾文(2001)。轉型領導理論在學校本位課程發展上的應用,學校行政,14,42-53。
11. 郭至和(2002)。鄉土教育在國小的實施與展望。社教資料雜誌,286,1-4。
12. 陳添球(2002)。國小鄉土教學融入九年一貫課程七大學習領域課程綱要之內容分析。花蓮師院學報,15,53-81。
13. 陳添球(2004)。鄉土教學素材融入社會學習領域教科書之模式。花蓮師院學報,18,159-190。
14. 陳啟榮(2004)。鄉土教育之剖析。教育趨勢導報,9,81-85。
15. 張素貞(1997)。落實鄉土教育--實現教育本土化的理想。北縣教育,17,63-64。