跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/06 02:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳美如
研究生(外文):Mei- Ru Chen
論文名稱:利用ISSR及RAPD探討台灣地區綠天竺草和天竺草之遺傳歧異度
論文名稱(外文):Study on the Genetic Diversity in Panicum maximum var. trichoglume and Panicum maximum of Taiwan by using ISSR and RAPD
指導教授:侯金日侯金日引用關係侯新龍林正斌林正斌引用關係
指導教授(外文):Chin- Jin HouShin- Lon HoJeng- Bin Lin
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:農學研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:135
中文關鍵詞:天竺草簡單重複序列間之DNA片段逢機增殖多型性DNA農藝性狀
外文關鍵詞:Panicum maximumISSRRAPDagronomic characters
相關次數:
  • 被引用被引用:3
  • 點閱點閱:367
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:1
本研究以農藝性狀及簡單重複序列間之DNA片段(inter simple sequence repeat, ISSR)和逢機增殖多型性DNA(random amplified polymorphic DNA, RAPD),探討自台灣各地區收集之74個綠天竺草(Panicum maximum var. trichoglume)和41個天竺草(Panicum maximum)之遺傳歧異度,結果摘要如下:
1. 以調查12項農藝性狀之結果, 14個地區74個綠天竺草遺傳距離介於4.3-26.5間,在歐氏距離13為截點可分為5群,第一群包含-台北、台中、台東、台南及花蓮地區;第二群包含-桃園、嘉義、新竹及苗票地區;第三群包含-彰化、高雄及雲林地區;第四群為宜蘭地區;第五群為屏東地區。而9個地區41個天竺草遺傳距離介於10.5-74.7間,在歐氏距離29為截點可分為4群,第一群包含-台中、嘉義、雲林及台南地區;第二群包含-高雄和台東地區;第三群包含-屏東和花蓮地區;第四群為南投地區。
2. ISSR分子標誌分析,僅有10個引子具有多型性及再現性良好,在綠天竺草可擴增出54條條帶,其中有46條具有多型性DNA條帶,多型性比例佔83.7%,遺傳分化指數(Gst)為0.5517,基因流(Nm)為0.4063,遺傳距離矩陣介於0.0535-0.3574間,以遺傳相似度0.15為截點可分為5群,第一群包含-台北和桃園地區;第二群包含-新竹、苗栗、台中及彰化地區;第三群包含-台南、屏東、台東、花蓮及宜蘭地區;第四群包含-雲林和嘉義地區;第五群為高雄地區。在天竺草可擴增出49條條帶,其中有36條具有多型性DNA條帶,多型性比例佔68.5%,遺傳分化指數(Gst)為0.5779,基因流(Nm)為0.3652,遺傳距離矩陣介於0.0188-0.3055間,以遺傳相似度0.11為截點可分為4群,第一群包含-台中、南投及雲林地區;第二群包含-嘉義、台南及高雄地區;第三群為屏東地區;第四群包含-台東和花蓮地區。綠天竺草和天竺草族群的遺傳距離與地理距離分別為r=0.2228 (p=0.0209*)和r=0.3825 (p=0.0118*),顯示二者皆有顯著的相關性,符合距離隔離模式。
3. RAPD分子標誌分析,僅有18個引子具有多型性及再現性良好,在綠天竺草可擴增出117條條帶,其中有89條具有多型性DNA條帶,多型性比例佔73.2%,遺傳分化指數(Gst)為0.4625,基因流(Nm)為0.5811,遺傳距離矩陣介於0.0302-0.2205間,以遺傳相似度0.10為截點可分為4群,第一群包含-台北、桃園、新竹、苗栗、台中及彰化地區;第二群包含-雲林、嘉義及台南地區;第三群包含-台東、花蓮及宜蘭地區;第四群包含-高雄和屏東地區。在天竺草可擴增出105條條帶,其中有72條具有多型性DNA條帶,多型性比例佔66.5%,遺傳分化指數(Gst)為0.5229,基因流(Nm)為0.4563,遺傳距離矩陣介於0.0401-0.2342間,以遺傳相似度0.11為截點可分為4群,第一群包含-台中、雲林、南投及嘉義地區;第二群包含-台南和高雄地區;第三群為屏東地區;第四群包含-台東和花蓮地區。綠天竺草和天竺草族群的遺傳距離與地理距離分別為r=0.5230 (p=0.0000*)和r=0.6912 (p=0.0000*),顯示二者皆有顯著的相關性,符合距離隔離模式。
4. 在本試驗中14個地區之綠天竺草及9個地區之天竺草,經由調查農藝性狀、ISSR及RAPD分析結果,得知調查農藝性狀歸群結果易受環境等因子影響;而ISSR和RAPD之結果皆有地理位置較近者,歸為同一群中,並以ISSR的分析較RAPD具有高的靈敏度。
In this study, the genetic diversity of 74 green panicgrass (Panicum maximum var. trichoglume) and 41 guineagrass (Panicum maximum) in Taiwan was discussed by using the agronomic characters, inter simple sequence repeat (ISSR), and random amplified polymorphic DNA (RAPD). Results were summarized as follow:
1. Based on the 12 agronomic characters to examine 14 test regions in which containing 74 green panicgrass, the genetic distance was located from 4.3 to 26.5. They can be divided into 5 groups based on the Euclidean distances 13 as the critical point. The first group included Taipei, Taichung, Taitung, Tainan and Hualine, the second group included Taoyuan, Chiayi, Hsinchu, and Miaoli, the third included Changhua, Kaohsiung, and Yunlin, the fourth and fifth groups included Yilan and Pingtung, respectively. In the 9 test regions that included 41 guineagrass, the genetic distance was located from 10.5 to 74.7. It can be divided into 4 groups based on the Euclidean distances 29 as the critical point. The first group included Taichung, Chiayi, Yunlin and Tainan, the second group included Kaohsiung and Taitung, the third group included Pingtung and Hualien, the fourth group included Nantou.
2. According to the ISSR analysis, 10 out of 100 UBC primers were positive. In green panicgrass, total of 54 bands were amplified, and there were 46 bands to possess the polymorphic typing, the percentage of polymorphic is 83.7%. The values of genetic differentiation (Gst) is 0.5517, the gene flow (Nm) is 0.4063, and the genetic diatance matrix was located from 0.0535 to 0.3574. They can be divided into 5 groups based on the genetic similarity of 0.15 as the critical point. The first group included Taipei and Taoyuan, the second group included Hsinchu, Miaoli, Taichung and Changhua, the third group included Tainan, Pingtung, Taitung, Hualine and Yunlin, the fourth group included Yilan and Chiayi, and the fifth group included Kaohsiung. For about guineagrass, total of 49 bands were generated, and there were 36 bands to have revealed the polymorphic typing, the percentage of polymorphic is 68.5%. The values of genetic differentiation (Gst) is 0.5779, the gene flow (Nm) is 0.3652, and the genetic diatance matrix was located from 0.0188 to 0.3055. They can be divided into 4 groups based on the genetic similarity of 0.11 as the critical point. The first group included Taichung, Nantou and Yunlin, the second group included Chiayi, Tainan and Kaohsiung, the third group included Pingtung, the fourth group included Taitung and Hualien. On this two species, the values of genetic distance and geographic distance is r=0.2228 (p=0.0209*) and r=0.3825 (p=0.0118*), respectively. These results revealed that they showing the significantly relationship with each other, and agreement with the model of distant isolation.
3. According to the RAPD analysis, 18 out of 40 random primers were positive. In green panicgrass, total of 117 bands were amplified, and there were 89 bands to possess the polymorphic typing, the percentage of polymorphic is 73.2%. The values of genetic differentiation (Gst) is 0.4625, the gene flow (Nm) is 0.5811, the genetic diatance matrix was located from 0.0302 to 0.2205. They can be divided into 4 groups based on the genetic similarity of 0.10 as the critical point. The first group included Taipei and Taoyuan, Hsinchu, Miaoli, Taichung and Changhua, the second group included Yunlin, Chiayi and Tainan, the third group included Taitung, Hualine and Yilan, and fourth group included Kaohsiung and Pingtung. For about guineagrass, total of 105 bands were amplified, and there were 72 bands to possess the polymorphic typing, the percentage of polymorphic is 66.5%. The values of genetic differentiation (Gst) is 0.5229, the gene flow (Nm) is 0.4563, the genetic diatance matrix was located from 0.0401 to 0.2342. They can be divided into 4 groups based on the genetic similarity of 0.11 as the critical point. The first group included Taichung, Yunlin, Nantou and Chiayi, the second group included Tainan and Kaohsiung, the third group included Pingtung, the fourth group included Taitung and Hualien. On this two species, the values of genetic distance and geographic distance is r=0.5230 (p=0.0000*) and r=0.6912 (p=0.0000*), respectively. These results revealed that they showing the significantly relationship with each other, and agreement with the model of distant isolation.
4. In this test, we have collected the green ganicgrass and guineagrass from differentially 14 and 9 locations, respectively. According to the results from the studies of agronomic characters, ISSR, and RAPD analysis, indicating that the results from the agronomic characters analysis were influenced by those environmental factors. Therefore, the species involved in one group is selected according to the nearly geographical distance by the results of ISSR and RAPD analysis. Moreover, there are more accuracy and sensitivity of the results from the ISSR than RAPD analysis.
目 錄
頁次
表目錄......................................................................................................Ⅱ
圖目錄......................................................................................................Ⅴ
壹、前言......................................................................................................1
貳、前人研究
一、天竺草之植株特性與分佈..............................................................2
二、天竺草及其相關分子標誌技術研究..............................................4
參、材料與方法
一、試驗材料..........................................................................................9
二、試驗方法........................................................................................16
三、資料分析........................................................................................20
肆、結果
一、農藝性狀之調查............................................................................22
二、種子發芽率....................................................................................52
三、ISSR分析結果.............................................................................55
四、RAPD分析結果.............................................................................75
伍、討論...................................................................................................95
陸、參考文獻..........................................................................................102
柒、附錄..................................................................................................108
王啟柱。1993。飼料作物學。正中書局。台北。
王昭月、張有明、沈百奎、王毓華和劉邦基。2005。利用RAPD與ISSR分子標誌鑑定西瓜品種。台灣農業研究 54: 257-269。
王昭月、范明仁。1998。微衛星DNA與逢機增殖多型性DNA在番椒同種內種原鑑定之利用與比較。中華農業研究 47(3):267-282.
李瑞宗。1995。台灣芒屬植物的族群與其在民俗植物學上角色之研究。國立台灣大學植物學研究所博士論文。
陳秋正。1997。天竺草族群生態之研究。國立中興大學植物學系碩士論文。
陳紫淵、胡澤寬、黃秋蘭、吳詩都、曽富生。2000。台灣地區百慕達草(Cynodon dactylon (L.) Pers.)種內變異之研究。農林學報 49(4):19-31。
陳裕星、郭俊毅、秦立德。2001。以RAPD分析豌豆種源遺傳歧異度之研究。台中區農業改良場研究彙報 72: 63-76。
陳章和、李小芳、黃茂雅、周先葉。2001。外來植物堅尼草生態學研究。生態科學 20(1,2): 37-40。
許建昌。1975。台灣的禾草。台灣省教育會。p. 557。
曾怡俐。2006。台灣地區龍葵(Solanum nigrum L.)遺傳歧異度的鑑定。國立嘉義大學農學研究所碩士論文。
湯文通。1967。作物育種之原理與實施。科學農業社出版。
黃勝忠、洪武澄、胡凱康。1981。春大麥主要農藝性狀之相關與路徑係數分析。臺中區農業改良場研究彙報 5: 12-23。
黃勝忠、蔡奇助。1997。RAPD分子標誌在落花生品種鑑別之應用。臺中區農業改良場研究彙報 57: 11-22。
張雙滿、鄭慶生。1974。果園敷蓋與覆蓋作物之研究-第二報:坡地柑橘果園覆蓋作物敷蓋之水土保持效益。中華水土保持學報 5(1): 82-95。
張雙滿、蔡鴻一。1974。果園覆蓋作物之蒸發散量(第二報)。中華水土保持學報 5(1): 56-69。
廖綿濬。1989。台灣水土保持論叢。山地農牧局。
潘慶芝、陳成、林順福。2003。台灣落花生品種分子鑑定之研究。中
華農學會報 4: 328-346。
潘慶芝、陳成、林順福。2004。利用雜交親本之ISSR DNA指紋鑑別落花生品種之研究。中華農學會報 5(3): 234-248。
蔡奇助、邱建中、林深林。1998。RAPD分子標誌在百慕達草品種鑑別之應用。臺中區農業改良場研究彙報 60: 19-27。
蕭怡馨、蔡智賢、岳慶熙、蔡竹固。2005。利用RAPD分析本省栽培非洲菊品種之遺傳歧異性及其雜交後代之遺傳性。中華農學會報 6(2): 161-176。
Aganga, A. A. and S. Tshwenyane. 2004. Potentials of guinea grass (Panicum maximum) as forage crop in livestock production. Pak. J. Sci. Ind. Res. 3(1): 1-4.
Amarger, V. and L. Mercier. 1995. Molecular analysis of RAPD DNA
based markers: Their potential use for the detection of genetic
variability in jojoba. Biochimie. 77: 931-936.
Andersen, W. R. and D. J. Fairbanks. 1990. Molecular markers : important tools for plant genetic resource characterization.Diversity 6: 61-53.
Bolaric, S., S. Barth, A. E. Melchinger and U. K. Posselt. 2005. Genetic
diversity in European perennial ryegrass cultivars investigated with
RAPD markers.Plant breed. 124:161-166.
Bono, J. A. M., M. C. M. Macedo, and V. B. P. Euclides. 2000. Root system biomass and specific surface and soil compaction under a rotational grazing system of Panicum maximum Jacq. Pastures. Reuniao da Sociedade Brasileira de Zootecnia 37(CD-ROM) 832. (in Portuguese).
Bradshaw, A. D. 1965. Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 13: 115-155.
Cao, W., P. Hucl, G. Scoles and R. N. Chibbar. 1998. Genetic diversity within apelta and macha wheats based on RAPD analysis. Euphytica 104: 181-189.
Carla, M. D. and M. V. Peter. 1992. Biological invasions by exotic grass, the grass/fire cycle, and global change. Annu. Rev. Ecol. Syst. 23: 63-87.
Dice, L. R. 1945. Measures of the amount of ecologic association between species. Ecology 26: 297-302.
Duke, J. A. 1983. Panicumn maximum Jacq.. Handbook of Energy Crops.
http://www.hort.purdue.edu/newcrop/duke_energy/Panicum_maximum.html
Du Ponte, W. M., E. Souza, M.C. Campbell and K. G. Fukumoto. 1998. Guinea grass (Panicum maximum) silage as an alternate roughage source for subsistent dairy production. http://www.hawaii.edu/ansc/Proceed/Hhl/ggrass.htm.
Ellstrand, N. C. and D. R. Elam. 1993. Population genetic consequences of small population size : implications for plant conservation. Annual Reriew of Ecology and Systematics 24: 217-242.
Erlich, H. A.. 1989. PCR technology. PP246. Stockton Press. New York.
Excoffer, L., P. E. Smouse and J. M. Quattro. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: ampplication to human mitochondrial DNA restriction data. Genetics 131: 479-491.
Ghariani, S., N. Trifi-Farah, M. Chakroun, S. Marghali and M.
Marrakchi. 2003. Genetic diversity in Tunisian perennial ryegrass
revealed by ISSR markers. Genetic Resources and Crop Evolution. 50:
809-815.
Goodwin, I. D., E. A. B. Aitken and L. W. Simith. 1997. Application of inter-simple seaquence repeat (ISSR) markers to plant genetics. Electrophoresis. 18: 1524-1528.
Gottlieb, L. D. 1977. Electrophoretic evidence and plant systematics. Ann. Mo. Bot. Gard. 64: 161-180.
Gupta, M., Y.-S. Chyi, J. Romero-Severson and J. L. Owen. 1994. Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeat. Theor. Appl. Genet. 89: 998-1006.
Hageman, C. and D. Fahselt. 1990. Enzyme electomorph variation in the lichen family Umbilicariaceae: within-stand polymorphism in umbilicate lichens of eastern Canada. Can. J. Bot. 68: 2636-2643.
Hamrick, J. L. and M. J. W. Godt. 1990. Allozyme diversity in plant species. In A. H. D. Brown, M. T. Clegg, A. L. Kahler, and B. S. Weir [eds.], Plant population genetics, breeding, and genetic resources, 43–63. Sinauer, Sunderland, Massachusetts, USA.
Huang, J. C. and M. Sun. 2000. Genetic diversity and relationships of sweet potatoes and its wild relatives in Ipomoea series Batatas (Convolvulaceae) as revealed by inter-simple sequence repeat (ISSR) and restriction analysis of chloroplast DNA. Theor. Appl. Genet. 100: 1050-1060.
Huff, D. R., R. Peakall and P. E. Smouse. 1993. RAPD variation within and among natural populations of outcrossing buffalograss (Buchloe dactyloides (Nutt.) Engelm). Theor. Appl. Genet. 86: 927-934.
Ishizaki, S. M. and R. W. Stanley. 1967. The effect of regrowth period on yield, chemical composition and nutritional value of Panicum grass-Hawaii. Agric. Expt. Sta. Tech. Prog. Rept. 154.
Kim, H. S. and R. W. Ward. 1997. Genetic diversity in Eastern U. S. soft
winter wheat (Triticum. aestivum L. em. Thell.) based on RFLPs and
coefficient of parentage. Theor. Appl. Genet. 94: 472-479.
Kobayashi, R.S., J.L.Brewbaker and H.Kamemoto. 1987. Identification
of Anthurium andraeanum cultivars by gel electrophoresis. J. Amer.
Soc. Hort. Sci.112(1): 164-167.
Lai, J. A., W. C. Yang and J. Y. Hsiao. 2001. An assessment of genetic relationships in cultivated tea clones and native wild tea in Taiwan using RAPD and ISSR makers. Bot. Bull. Acad. Sin. 42 : 93-100.
Lewontin, R. C. 1972. The apportionment of human diversity. Evol. Biol. 6: 381-398.
Lin, C. S. and M. R. Binns. 1984. The precision of cultivar traits within eastern cooperative tests. Can. J. Plant Sci. 64: 587-591.
Magness, J. R., G. M. Markle and C. C. Compton. 1971. Food and feed crops of the United States. Interregional Research Project IR-4, IR Bul.1.
Mantel, N. A. 1967. The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209-220.
Morrision, D. A. and P. H. Weston. 1985. Analysis of morphological variation in a field sample of Caladenia Catenata (Smith) Druce (Orchidaceae). Aust. J. Bot. 33: 185-195.
Nakagawa, H., M. Ebina, M. Kobayashi and H. Araya. 1999. Genome research in apomictic guineagrass toward the isolation of apomixis gene(s). Plant & Animal Genome VII Conference. Canada.
Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Nat, Acad. Sci. USA 70: 3321-3323.
Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590.
Nevo, E., A. Grama, A. Beiles and E. M. Golenberg. 1986. Resources of high-protein genotypes in wild wheat, Triticum dicoccoides in Israel: predictive method by ecology and allozyme markers. Genetica 68: 215-227.
Nicese, F. R., J. I. Hormaza and G. H. McGranahan. 1998. Molecular
characterization and genetic relatedness among walnut (Juglans regia
L.) genotype based on RAPD markers. Euphytica 101: 199-206.
Oard, J.H. and S.Dronavalli. 1992. Rapid isolation of rice and maize
DNA for analysis by random-primer PCR. Plant Mol. Bio. Rep.
10: 236-241.
Parsons, J. J. 1972. Spread of African pasture grasses in the American tropics. J. range manage. 25: 12-17.
Park, S. J., E. R. einbergs and L. S. P. Song. 1977. Grain yield and its
components in spring barley under row and hill plot conditions.
Euphytica 26: 521-526.
Pejic, I., P. Ajmone-Marsan, M. Morgante. V. Kozumplick, P. Castiglioni,
P. Castiglioni, G. Taramino and M.Motto.1998. Comparative analysis
of genetic similarity among maize inbred lines detected by RFLPs,
RAPDs, SSRs, and AFLPs. Theor.Appl. Genet.97: 1248-1255.
Qian, W., S. Ge and D. Y. Hong. 2001. Genetic variation within and among populations of a wild rice Oryza granulate from China detectdc by RAPD and ISSR markers. Theor. Appl. Genet. 102: 440-449.
Raina, S. N., V. Rani, T. Kojima, Y. Ogihara, K. P. Singh and R. M. Devarumath. 2001. RAPD and ISSR fingerprints as useful genetic marker for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome 44: 763-772.
Rongwen, J., M. S. Akkaya and A. A. Bhagwat. 1995. The use of microsatellite DNA markers for soybean genotype identification. Theor. Appl. Genet. 90: 43-48.
Rohlf, F. J. 1993. NYSYS-pc numerical taxonomy and multivariate analyais system. New York: Applied Biostatistics.
Sanz-Cortes, F., M.L. Badenes, S. Paz, A. Iniguez and G. Llacer. 2001. Molecular characterization of olive cultivars using RAPD markers. J. Amer. Soc. Hort. Sci. 126(1): 7-12.
Savidan,Y. H. 1985. Genetics and Utilization of Apomixis for the improvement of Guineagrass(Panicum maximum Jacq.). Thomas and de Andrade. 16: 182-185.
Schemsk, D. W. 1984. Population structure and local selection in Impatiens (Balsaminaceae), a selfing annual. Evolution 38: 817-832.
Singh, A. K., J. Smart, C. E. Simpson and S. N. Raina. 1998. Genetic variation vis-à-vis molecular polymorphism in groundnut, Arachis hypogaea L. Genet Resour Crop Evol. 45: 119-126.
Slatkin, M. and N. H. Barton. 1989. A comparison of three indirect methods for estimating average levels of gene fiow. Evolution 43: 1349-1368.
Slatkin, M. 1987. Gene flow and the geographic structure of natural populations. Science 236: 787-792.
Smith, J. S.C. and O. S. Smith. 1992. Fingerprinting crop varieties. Adv. agron. 47: 85-140.
Sokal, R. R. and N. L. Oden. 1978. Spatial auto correlation in biology. Some biological implications and four applications of evolutionary and ecological interest. Biol. J. Linn. Soc. 10: 229-249.
Tautz, D. and M. Renz. 1984. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res. 12: 4127-4138.
Taramino, T. and S. Tingey. 1996. Simple sequence repeats for germplasm analysis and mapping in maize. Genome 39: 277-287.
Tikunov, Y., L. Khrustaleva and G. Karlov. 2003. Application of ISSR markers in the genus Lycopersicon. Euphytica 131: 71-81.
Tsumura, Y., K. Ohba and S. H. Strauss. 1996. Diversity and inheritance of inter-simple sequence repeat polymorphisms in Douglas-fir (Pseudotsuga menziesii) and sugi (Cryptomeria japonica). Theor. Appl. Genet. 92: 40-45.
UNFAO. 1967. Interim Assessment of Panicum colorum in Australia. CSIRO Plant Introd. Reviw 3(3).
Vavilov, N. I. 1926. Studies on the origin of cultivated plants. Bulletin
of Applied Botany, Genetics and Plant Breeding [Trud. poprikl. bot. i selek]. 16(2): 1–248.
Virk, P. S., B. V. Ford-Lloyd, M. T. Jackson, H. S. Pooni, T. P. Clemeno and H. J. Newbury. 1996. Predicting quantitative variation within rice germplasm using molecular markers. Heredity 76: 296-304.
Welsh, J. and M. McCelland. 1991. Genomic fingerprinting using arbitarity primer PCR and a matrix of pairwise combinations of primers. Nucleic Acids Res. 19: 5275-5279.
Williams, J. G., A. R. Kubelik, K. J. Livak, J. A. Rafalski and S. V.
Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are
useful as genetic markers. Nucleic Acids Res. 18: 6531-6535.
Wright, S. 1931. Evolution in Mendelian populations. Genetics 16 : 97-159.
Wright, S. 1943. Isolation by distance. Genetics 28: 114-138.
Wolfe, A. D. and A. Liston. 1998. Contributions of PCR-based methods to plant systematics and evolutionary biology. In: Soltis, D. E., P. S. Soltis, J. J. Doyle, eds. Plant molecular systematics II. Boston: Kluwer, 43–86.
Wolfe, A. D., Q. Y. Xiang and S. R. Kephart. 1998. Assessing
hybridization in natural populations of Penstemon (Scrophulariaceae) using hypervariable inter simple sequence repeat markers. Mol. ecol. 7: 1107-1125.
Wu, K. S. and S. D. Tanksley. 1993. Abundance, polymorphism and genetic mapping of microsatellite in rice. Mol. Gen. Genet 241: 225-235.
Yeh, F. C., R. C. Yang, , T. B. J. Boyle, Z. H. Ye. and J. X. Mao. 1999. POPGENE 3.2, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Gentre, University of Alberta, Edmonton.
Zietkiewicz, E., A. Rafalski and D. Labuda. 1994. Genome fingerprinting by simple sequence repeat (SSR) anchored polymerase chain reaction amplification. Genomics 20: 176-183.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top