跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/12 12:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:翁慈青
論文名稱:國小五年級學童在數形規律問題解題表現之個案研究
指導教授:楊德清楊德清引用關係
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:數學教育研究所
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
中文關鍵詞:數形規律解題表現個案研究
相關次數:
  • 被引用被引用:25
  • 點閱點閱:925
  • 評分評分:
  • 下載下載:153
  • 收藏至我的研究室書目清單書目收藏:2
摘  要
本研究主要目的為:1. 探討國小五年級學童在數形規律問題的自然想法與解題策略;2. 透過研究者的教學佈題引導,幫助學童察覺規律的特性,進而發展描述、延伸與通則化的規律探究能力;3. 探討研究對象在教學後,其規律探究能力的改變情形。因此,本研究採個案研究法,以研究者所任教之學校的四位五年級學生為對象,進行數形規律之教學與測驗。由於現今的國小數學課程並沒有提供充足的規律經驗課程,希望本研究之結果可作為課程設計者或教師在數形規律教學的參考與建議。
  研究結果發現:四位學生在『數字或圖形位置有規律變動的題型』、『二個變數的縱向等差數量關係題型』、『二個變數的縱向等比數量關係題型』、『一個變數的等差數量關係題型』、『一個變數的等比數量關係題型』分別有不同層次的規律探究能力。繼之,經過實踐教學後,有三位學生在前述五種題型中都可以達到最高層次的通則化規律探究能力,但只有一位學生(小翰)在『一個變數的等差數量關係題型』和『一個變數的等比數量關係題型』只能達到察覺、描述和延伸的規律探究能力,卻無法將此關係通則化。大致來說,本研究教學實踐的結果,確實能幫助學童提升其規律探究的能力。
目次
中文摘要…….………………………………………………….. i
英文摘要………………………………………...………….….. ii
目次……….……………………………….….………….……. iii
表次…….………………………………………………………..v
圖次…….……………………………………………………….vi
第一章 緒論
第一節 研究背景與動機.……..…………………………..1
第二節 研究目的…………..……………………….…….3
第三節 名詞釋義…………..……………………...……..4
第四節 研究範圍與限制.………….….…………….…...5
第二章 文獻探討
第一節 樣式規律在代數學習的重要………………....…6
第二節 國小樣式教材之分析.………………………………. 9
第三節 樣式規律的思維模式………………………………….12
第四節 樣式規律的相關研究.…………………………………17
第三章 研究方法
第一節 研究方法與研究架構.…………………………...…22
第二節 研究參與者….………..………………..………....24
第三節 研究工具…………..…..………………..….......27
第四節 資料的蒐集與整理分析……………………………..…..39
第五節 研究流程 ………………………………………....42
第四章 結果與討論
第一節 學生在數形規律問題的自然想法與解題表現…..…45
第二節 教學實施歷程與結果…………...……………..…76
第三節 教學後,學生在數形規律解題表現之改變情形…….103
第五章 結論與建議
第一節 結論………...…………………..…………….125
第二節 建議….……………………………………..……..128
參考文獻
中文部分……..….…………………………………………..131
英文部分….…………………………………………….…….134
附錄
附錄一 數形規律問題前測………………….………..……...142
附錄二 教學活動設計.………………..……..………..……...144
附錄三 課後作業單……...………..……………….……...148
附錄四 數形規律問題後測………………..……..……..……...150
參考文獻
中文部分
王文科(2000)。教育研究法(五版二刷)。台北:五南。
田万海(1992)。數學教育學。浙江:教育。
朱綺鴻(1998)。高中師生對數學歸納法瞭解的情況與教學因應之研究。國立台灣師範大學科學教育研究所博士論文。
吳芝儀、李奉儒譯(1995)。質的評鑑與研究。台北:桂冠。
余民寧(1997)。有意義的學習:概念構圖之研究。台北:商鼎。
何鳳珠(2004)。國小六年級學童以七巧板發展分數基準化能力之研究。國立嘉義大學教育學院數學教育研究所碩士論文。
卲瑞珍(1995)。教育的歷程。台北:五南。
李美蓮(2004)。一位國二學生在等差數列解題表現之研究。國立嘉義大學教育學院數學教育研究所碩士論文。
林福來、鄭英豪(1998)。教學思維的發展:整合數學教學知識的教材教法。行政院國家科學委員會專題研究計劃成果報告(報告編號:NSC-87-2511-S-003-001)。台北:中華民國行政院國家科學委員會。
林文生、鄔瑞香(1999)。數學教育的義務與實務:另類教與學。台北:心理。
林達森(2002)。合作學習在九年一貫課程的應用。教育研究資訊,10(2),87-103。
林政輝(2002)。國中生討論數規律關係的表達理由能力之成長探究。國立台灣師範大學數學系教學碩士班碩士論文。
周筱亭(1995)。從解題看新課程教師在職教育。國立嘉義師範學院84學年度數學教育研討會論文彙編。
邱兆偉(1995)。質的研究的訴求與設計。教育研究,4,1-33。
胡炳生(1994)。數學解題思維分法。台北:九章。
洪明賢(2003)。國中生察覺數形規律的現象初探。國立台灣師範大學數學系教學碩士班碩士論文。
高淑清(2002)。教育研究(二)質性教育研究。載於楊國賜主編,新世紀的教育學概論-科技整合導向,517-576。台北:學富。
高耀琮(2002)。兒童平面幾何圖形概念之探討。國立台北師範學院數理教育研究所碩士論文。
教育部(1993)。國民小學課程標準。台北:台捷。
教育部(2001)。國民中小學九年一貫課程暫行綱要。台北:教育部。
教育部(2003)。國民中小學九年一貫課程綱要(數學學習領域)。台北:教育部。
教育部(2003)。樂在數學–國民中小學數學教學參考手冊。台北:教育部。
張世忠(1998)。社會建構教學與科學概念。教育資料與研究,24,30-36。
張春興(1999)。教育心理學-三化取向的理論與實踐。台北:東華。
張英傑(2001)。發展九年一貫數學領域課程之省思。國民教育,41(6),29-38。
陳英娥(1998)。數學臆測:思維與能力的研究。國立台灣師範大學科學教育研究所博士論文。
陳嘉麟(2004)。發展符合九年一貫精神之二元聯立方程教學模組之研究。國立彰化師範大學科學教育研究所碩士論文。
曹亮吉(2003)。阿草的數學聖杯。台北:天下遠見。
曹才翰、蔡金法(1989)。數學教育學概論。江蘇教育出版社。
郭生玉(2002)。心理與教育研究法。台北:精華。
畢家湘(1991)。從科學貫通哲學。台北:台灣商務。
甯自強(1995)。五個區分對數與計算教材設計的影響。載於八十三學年度國民中小學數學科研討會論文暨會議實錄專輯,63-90。台北:台灣省國民學校教師研習會編印。
甯自強(1998)。顏淑茹的數概念。國民教育研究學報,4,231-264。
黃志賢(2001)。原住民學生利用代數方法解題之研究。原住民教育季刊,21,17-38。
黃幸美(1997)。透析國小數學新課程與教學。研習資訊,14(2),29-34。
黃敏晃(1985)。數學解題。國教月刊,32(7.8),40-52。
黃敏晃(1986)。數學解題規則。台北:牛頓。
黃敏晃(1998)。數學年夜飯。台北:心理。
黃敏晃(2000)。規律的尋求。台北:心理。
黃瑞琴(2004)。質的教育研究方法。台北:心裡。
黃國勳、劉祥通(2003)。一個創意數學教學活動的實踐-以撲克牌遊戲融入因數教學為例。科學教育研究與發展,33,p70-89。
葉李華譯(1996)。大自然的數學遊戲。台北:天下遠見。
鄭毓信、李國偉(1999)。數學哲學中的革命。台北:九章。
蔡聰明(1995)。代數是什麼?科學月刊,26(1),67-73。
劉秋木(1996)。國小數學科教學研究。台北:五南。
劉祥通(2003)。建構式數學由簡變繁嗎?教師之友,44(1),6-9。
鍾靜(1999)。落實國小數學新課程之意圖與學校本位的進修活動。課程教
學季刊,2(1),15-35。
鍾靜(2001)。學生學習為中心的數學教學特質分析研究II。行政院國家科學委員會專題研究計劃成果報告(報告編號:NSC 89-2511-S-152-029)。台北:中華民國行政院國家科學委員會。
鍾靜(2003)。論九年一貫課程數學領域之暫行綱要。論文發表於國立台灣師範大學主辦之「課程綱要實施檢討與展望研討會」。台北市。
羅浩源編著(1997)。生活的數學。台北:九章。
西文部份
Artzt A. F. & Newman, C. M. (1997). How to use cooperative learning in the mathematics class. Reston, VA: NCTM.
Baroody, A. J. (1993). Problem solving, reasoning, and communication, K-8: Helping children think mathematically. New York: Macmillan.
Bogdan, R. C. & Biklen, S. K. (1992). Qualitative research for education: An instuuction to theory and methods (2 ed). Boston, MA: Allyn and Bacon.
Booth, L. R. (1984). Algebra: Children’s strategies and errors. Windsor, United Kingdom: NFER- Nelson.
Booth, L. R. (1988). Children’s difficulties in beginning algebra. In F. Coxford (Ed.), In the ideas of algebra K-12, 20-32.. Reston, VA: NCTM.
Carpenter, T. P., Corbitt, M. K., Kepner, H. S., Lindquist, M. M., & Reys, R. E. (1980). Solving verbal problem: results and implications from National Assessment. Arithmetic Teacher, 28(1), 8-12.
Carpenter, T. P., Matthews, W., Lindquist, M. M., & Silver, E. A. (1984). Achievement in mathematics: Results from the National Assessment. Elementary School Journal, 84, 485-495.
Chiu, M. M. (1996). Exploring the origins, use, and interaction of student intuitions: Comparing the lengths of paths. Journal for research in mathematics education, 27(4), 478-504.
Davydov, V. V. (1982). The psychological characteristics of the formation of elementary mathematical operations in children. In T. P. Carpenter, J. M. Moser, & T. A. Romberg (Eds.). Addition and subtraction: A cognitive perspective. Hillsdale, NJ: LEA.
Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In Tall, D. (Ed.), Advanced Mathematical Thinking. The Netherlands, Kluwer Academic Publishers.
Erickson, F. (1986). Qualitative methods in research on teaching. In Wittrock (Ed). Handbook of result on teaching, 119-161. NY: Macmillan.
Fernandez, M. & Anhalt, C. (2001). Transition toward algebra. Mathematics Teaching in The Middle School, 7(4), 236-241.
Fischbein, E. (1987). Intuition in Science and Mathematics: An Education approach. Netherlands: Reidel.
Fischbein, E. (1990). Intuition and informational processing in mathematical activity. International Journal of Education Research, 14(1), 31-50.
Fraivillig, J. (2001). Strategies for advancing children’s mathematical thinking. Teaching children mathematics, 454-459.
Freudenthal, H. (1971). Geometry Between the Devil and the Deep Sea. Education Studies in Mathematics, 3, 413-435.
Freudenthal, H. (1991). Revisiting mathematics education. Dordrecht, The Netherlands: Kluwer Academic Publishers.
Fernandez, M. & Anhalt, C. (2001). Transition toward algebra. Mathematics teaching
in the Middle School, 7(4), 236-241.
Gange, R. M. (1970). The condition of learning. New York: Holt, Rinehart and Winston.
Gange, E. D. (1985). The cognitive psychology of school learning. Boston: Little, Brown & Copany.
Glass, A. L., & Holyoak, K. J. (1986). Cognition. NY: Random House.
Godfrey, L., & O’Connor, M. C. (1995). The vertical hand span: Nonstandard units, expressions, and symbols in the classroom. Journal of Mathematical Behavior, 14, 327-345.
Gray, E. M., & Tall, D. (1993). Success and failure in mathematics: The flexibility meaning of symbols as process and concept. Mathematics Teaching, 142, 6-10.
Gray, E. M., & Tall, D. (1994). Developing student’s algebraic reasoning ability. In L. V. Stiff & F. R. Curcio(Eds.), Developing mathematical reasoning in grade K-12, 127-137. Reston, VA: NCTM.
Gray, E. M., Pitta, D., Pinto, M., & Tall, D. (1999). Knowledge construction and diverging thinking in elementary & advanced mathematics. Educational Studies in Mathematics, 38, 111-133.
Greenes, C. & Findell, C. (1999). Groundworks: Algebraic Thinking, Grade 3. Chicago, I11. : Creative Publications.
Greer, B. (1997). Modeling Reality in Mathematics Classrooms: The Case of Word Problems. Learning and Instruction, 7(4), 293-307.
Guba, E. G. & Lincoln, Y. S. (1981). Effective evaluation: Improving the usefulness of
evaluation results through responsive and naturalistic approaches. San Francisco: Jossey-Bass.
Harel, G. & Kaput, J. (1991). The role of conceptual entities and their symbols in building advanced mathematical thinking. In Tall, D. (Ed.), Advanced Mathematical Thinking. The Netherlands, Kluwer Academic Publishers.
Hayes, J. R. (1989). The complete problem solver (2 nd ed.). Hillsdale, NJ: Erlbaum.
Hersh, R. (1998). What is Mathematics, Really? London: Vintage Books.
Hoyoak, V. M. (1990). Students’ cognitive style and their use of problem-solving heuristic and metacognitive process. (ERIC No. 347069)
Jarvis, C. H. & Blank, B. B. (1989). Great starts mathematics approach 1987-88. (ERIC Document Reproduction Service No. ED316339)
Jennifer, M. B. (2001) What Is Algebra in Elementary School. Teaching Children Mathematics, 196-200.
Johnson, D. W. & Johnson, R. T. (1992). Encouraging thinking through constructive controversy. In N. Davidson & T. Worsham(Eds.), Enhancing thinking through cooperative learning, 120-137. New York: Teacher College Press.
Kieran, C. (1990). Cognitive processes involved in learning school algebra. In P. Nesher, & Kilpatrick, J. (Eds.) Mathematics and Cognition: 96-112. NY. : Syndicate of the University of Cambridge.
Kieran, C. (1992). The learning and teaching of school algebra. In D. A. Grouws (Ed.) Handbook of research on mathematics teaching and learning, 390-419. NY: Macmilliam.
Kilpatrick, J. (1985). A retrospective account of the past 25 years of research and learning mathematical problem solving. In E. Silver (Ed.) Teaching and learning mathematical problem solving: Multiple research perspectives. LEA, Hillsdale, New Jersey.
Kouba, V. L., Carpenter, T. P., & Swafford, j. O. (1989). Numbers and Operations. In M. M. Lindquist (Ed.), Results from the Fourth Mathematics Assessment of the National Assessment of Educational Progress. Reston, VA: NCTM.
Kruik, S., & Rudnick, J. A., (1993). Reasoning and Problem Solving: A Handbook for Elementary School Teachers. Allyn and Bacon.
Kuchemann, D. (1981). Children’s understanding of mathematics. In K. Hart (Ed.), Algebra, 11-16. London: Murray.
Lester, F. K. (1980). Research on mathematical problem solving. In R. J. Shumway (Ed.), Research in mathematics education, 286-323. Reston, VA: NCTM.
Lins, R. C. (2001). The production of meaning for algebra: A perspective based on a theoretical model of semantic fields. In R. Sutherland, T. Rojano, A. Bell & R. Lins(Eds), Perspectives on school algebra, 37-60. Kluwer Academic Publishers.
Maida, P. (2004). Using Algebra Without Realizing It. Mathematics teaching in the middle school, 484-488.
Mason, J., Burton, L., & Stacey, K. (1985). Thinking Mathematically. Mento Park, California: Addison-Wesley Publishers.
Mayer, R. E. (1992). Thinking, problem solving, cognition, 387-414. New York: W. H. Freeman and Company.
Musser, G. L., & Burger, W. F. (1988). Mathematics for elementary teacher. New York: Macmillan Publishing Company.
National Council of Supervisors of Mathematics. (1977). Position paper on basic mathematical skill. Arithmetic Teacher, 25, 19-22.
National Council of Teachers of Mathematics. (1980). Problem solving be the focus of school mathematics in the 1980’s. An agenda for action. Palo Alto, Calif. : Dale Seymour Publications.
National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: NCTM.
National Council of Teachers of Mathematics. (1991). Professional teaching standards for teaching mathematics. Reston, VA:NCTM.
National Council of Teachers of Mathematics. (2000). The principle and standards for school mathematics. Reston, VA: NCTM.
National Council of Supervisors of Mathematics. (1977). Position paper on basic mathematical skill. Arithmetic Teacher, 25, 19-22.
Nickerson, R. S. (1991). Modes and models of informal reasoning: A commentary. In J. F.Voss, D. N. Perkins, & J. W. Segal(Eds.), Informal reasoning and education, 291-309. New Jersey: Lawrence Erlbaum Associates.
Novak, J. D. (1983). Meta-learning and meta-knowledge instruction as strategies to reduce misconceptions. In h. Helm, & J. D. Novak (Eds.). Proceedings of the international seminar on misconceptions in science and mathematics, 100-110. Ithaca, New York: Department of Education, Cornell University.
Patton, M. Q. (1990). Humanistic psychology and qualitative research: shared principles and processes. Person-Centered Review, Spring.
Polya, G. (1954). Induction and analogy in mathematics, 1-58. Princeton University Press.
Resnick, l. B. (1999). The Develop of Mathematical Intuition. Graduated Institution of Science. National Taiwan Normal University: Taipei, Taiwan, 63-81.
Reys, R. E., Reys, B. J., Nohda, N. Ishidda, J., Yoshikawa, S., & Shimizu, K. (1991). Computational estimation performance and strategies used by fifth- and eighth-grade Japanese student. Journal for Research in Mathematics Education, 22(1), 39-58.
Schiftery, D. (1999). Reasoning about operations early algebraic thinking in K-6. Developing mathematical reasoning in grades K-12, 63-81. Reston. VA: NCTM.
Schoenfeld, A. H. (1985). Verbal data, protocol analysis, and the issue of control. In A. H. Schoenfeld(Ed.), Mathematical problem solving, 270-344. New York: Academic Press.
Schonberger, A. k. (1976). The interrelationship of sex, vision spatial ability, and mathematical problem solving ability in grade seven. Part 1, 2, and3.
Sfard, A. (1991). On the dual of mathematics concept: Reflection on process and objects different sides of the same coin. Educational Studies in Mathematics, 22, 1-36.
Sfard, A. (1995). The development of algebra: Confronting historical and psychological perspectives. Journal of Mathematical Behavior, 14, 15-39.
Solso, R. L. (2005). Cognitive psychology. (7rd Ed.). Needham Heights, MA: Allyn and Bacon.
Sovchik, Z. (1996). Teaching mathematics to children (2nd Ed. ). New York, NY: HarperCollins College Publishers.
Steen, L. A. (1988). The Science of Patterns. Science 240.
Sternberg, R. J. (1998). Cognitive Psychology. New York: Harcourt Brace College Publishers.
Thornton, S. (2001). New approaches to algebra: Have we missed the point? Mathematics Teaching In the Middle School, 6(7), 388-392.
Vygotsky, L. S. (1978). Mind in society: The development of higher psychological process. Cambridge, MA: Harvard University Press.
Wanger, C. & Kieran, C. (1989). Research agenda for mathematics education: Research issues in the learning and teaching for algebra. Washington DC: NCTM.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top