跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/10 22:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張智威
研究生(外文):Jhih-Wei Jhang
論文名稱:在模擬膽汁下探討膽固醇活動力值ChAT與膽固醇結晶之間的關係
指導教授:劉振倫劉振倫引用關係
指導教授(外文):Chen-Lun Liu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:生物技術研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:92
相關次數:
  • 被引用被引用:2
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:1
膽固醇結石是現在社會上常見的文明病之一,而膽固醇(Ch)的結晶為膽固醇結石形成過程中之關鍵因子,因此,過飽和膽汁中Ch結晶的出現會有助於膽固醇結石形成,為了預防及治療膽固醇結石的發生,探討Ch結晶形成的原因則是非常重要的事情。在過去,膽固醇的過飽和被認為是結晶形成的唯一驅動力,但後來發現膽汁中過飽和膽固醇只是形成結晶的條件之一,而從熱力學的角度所觀察的膽固醇活動力值(thermodynamic activity of cholesterol, Ch AT)才是結晶的真正驅動力,而微脂粒(vesicles)的存在僅提供結晶所需的位置。本實驗針對親脂性膽鹽taurochenodeoxycholate (TCDC)-lecithin(L)及taurocholate (TC)-lecithin(L)系統,於不同的膽固醇飽和指數(cholesterol saturation index, CSI=2.0、2.3、2.5)和不同的Ch AT條件下,配製八種不同濃度比例 [TCDC/L=111.9-22 mM (TCDC/L=5.1)、TCDC/L=72.9-21.2 mM (TCDC/L=3.4)、TC/L=111.9-22 mM (TC/L=5.1)、TC/L=72.9-21.2 mM (TC/L=3.4)]之過飽和TCDC-L-Ch及TC-L-Ch模擬膽汁並對Ch結晶進行定量分析,結果發現不論TCDC-L-Ch或是TC-L-Ch,兩者濃度比例中BS/L=5.1溶液有較早的結晶出現、有較快的結晶速度、有較多的結晶生成,BS/L=3.4溶液居次,表示膽固醇活動力值越高者,越能促進結晶的形成及析出;反觀在不同CSI的變化下雖然CSI較高的有較多膽固醇析出,但是所觀測到膽固醇結晶析出的時間及速率並沒有太明顯的差別,所以造成的影響較小。此外,利用粒徑分析儀測定模擬膽汁於微脂粒(300~400 Å)出現時之濃度指數(concentration index),結果發現微脂粒只是提供膽固醇結晶所需的位置,並不會對膽固醇結晶造成太大的影響。
Cholelithiasis is a kind of common diseases now. Previous studies have shown that cholesterol(Ch) nucleation is a key for Ch gallstone formation. Thus, appearance of Ch nucleation in supersaturated biles is an indication to Ch gallstone formation. To prevent the occurrence of Ch gallstones, investigation of Ch nucleation in supersaturated biles is very important. In the past, supersaturation of Ch in bile was mistakenly believed to be the only driving force for Ch gallstones. Later studies indicated that supersaturation of Ch in bile was a necessity but not the only requirement for Ch gallstone formation, whereas thermodynamic activity of cholesterol (Ch AT) was reported to be the true driving force for Ch nucleation. In addition, vesicles only provided nucleation sites. We chose two different bile salts, taurochenodeoxycholate (TCDC) and taurcholate (TC), and investigated the Ch crystallization quantitatively in supersaturated TCDC- Lecithin(L)-Ch and TC- Lecithin(L)-Ch model biles. Eight model biles [TCDC/L=111.9-22mM (TCDC/L=5.1), TCDC/L=72.9-21.2 mM (TCDC/L=3.4), TC/L=111.9-22mM (TC/L=5.1), TC/L=72.9-21.2mM (TC/L=3.4)] with different values of Ch saturation index (CSI=2.0, 2.3, 2.5) and Ch AT were prepared. Results indicate that regardless of the TCDC-L-Ch or the TC-L-Ch system, saturated solutions with BS/L=5.1 exhibit earlier appearance, faster crystallization rate, and larger amount of Ch crystallizations, compared to the saturated solutions with BS/L=3.4. It shows that the higher Ch AT is, the more favorably Ch crystallizes. Although the saturated solutions with higher CSI cause more Ch crystallization, difference in the nucleation process is not obvious. The result indicates that CSI does not influence Ch crystallization directly when the Ch AT values are nearly the same. Furthermore, concentrations of vesicles (300 ~ 400 Å) in different kinds of model biles can be determined by a particle size analyzer. Results together with Ch AT values in model biles show that the vesicles are only provided for the site of Ch crystallization.
中文摘要 ………………………………………………………… i
英文摘要 ………………………………………………………… iii
目錄 ……………………………………………………………… v
圖目錄 …………………………………………………………… vii
表目錄 …………………………………………………………… x


第一章 緒論
1.1前言 ………………………………………………………… 1

第二章 文獻回顧
2.1 膽汁………………………………………………………… 8
2.1.1 膽汁的特性 ……………………………………………… 8
2.1.2 膽固醇 …………………………………………………… 10
2.1.3 磷脂質 …………………………………………………… 11
2.1.4 膽鹽 ……………………………………………………… 12
2.2 膽汁中微胞之形成 ………………………………………… 17
2.2.1 簡單微胞 ………………………………………………… 18
2.2.2 BS-L複合微胞 ………………………………………… 19
2.3 微脂粒 ……………………………………………………… 21
2.4膽固醇活動力值 …………………………………………… 24

第三章 問題陳述
3.1 過飽和TCDC-L-Ch及TC-L-Ch系統之膽固醇結晶析出實驗 30
3.2過飽和TCDC-L-Ch及TC-L-Ch系統之粒徑分析實驗 ……… 31

第四章 過飽和TCDC-L-Ch及TC-L-Ch系統之膽固醇結晶析出實驗
4.1 簡介 ………………………………………………………… 32
4.2 材料與方法 ………………………………………………… 33
4.2.1 模擬膽汁配製及取樣 …………………………………… 33
4.2.2 膽固醇含量分析 ………………………………………… 36
4.3 結果與討論 ………………………………………………… 39
4.3.1 檢量線 …………………………………………………… 39
4.3.2 膽固醇含量分析 ………………………………………… 41

第五章 過飽和TCDC-L-Ch及TC-L-Ch系統之粒徑分析實驗
5.1 簡介………………………………………………………… 54
5.2 材料與方法 ………………………………………………… 62
5.2.1標準品量測 ……………………………………………… 62
5.2.2樣品量測 ………………………………………………… 63
5.3 結果與討論 ………………………………………………… 65
5.3.1 標準品之粒徑分析探討 ………………………………… 65
5.3.2 過飽和TC-L-Ch模擬膽汁之粒徑分析探討 …………… 67


第六章 結論
6.1 總論 ………………………………………………………… 79
6.2未來展望 …………………………………………………… 80

參考文獻 ………………………………………………………… 81


圖目錄
圖1-1 肝膽在消化系統的位置 ……………………………… 6
圖1-2 膽固醇結石的生成原因 ……………………………… 7
圖2-1 膽固醇分子結構 ……………………………………… 11
圖2-2 Lecithin分子結構 …………………………………… 12
圖2-3 膽鹽 (TC、TUDC、TCDC、THDC) 的化學結構 ……… 13
圖2-4 人體膽汁中,一級、二級和三級膽鹽合成代謝之化學結構
及位置 ………………………………………………… 14
圖2-5 膽鹽的腸肝循環 ……………………………………… 16
圖2-6 膽鹽簡單微胞聚集過程 ……………………………… 20
圖2-7 複合微胞類桿狀結構之主要兩種模型A. stacked-disk
model ,B. radial-shell model …………………… 20
圖2-8 微脂粒結構圖 ………………………………………… 22
圖2-9 TC-L-Ch模擬膽汁系統之Ch AT對CSI關係圖 ……… 28
圖3-1 膽固醇結石形成之三種成因 ………………………… 29
圖4-1 TCDC/L=5.1、3.4檢量線關係比較圖 ……………… 40
圖4-2 TC/L=5.1、3.4檢量線關係比較圖 ………………… 40
圖4-3 靜置37℃下,TCDC/L=5.1、3.4系統,膽固醇隨時間結晶析
出之關係曲線圖 ……………………………………… 43
圖4-4 靜置37℃下,TC/L=5.1、3.4系統,膽固醇隨時間結晶析
出之關係曲線圖 ……………………………………… 43
圖4-5 靜置37℃下,TCDC/L=5.1 CSI=2.0與CSI=2.5,膽固醇隨時
間結晶析出之關係曲線圖 …………………………… 44
圖4-6 靜置37℃下,TCDC/L=3.4 CSI=2.0與CSI=2.3,膽固醇隨時
間結晶析出之關係曲線圖 …………………………… 44
圖4-7 靜置37℃下,TC/L=5.1 CSI=2.0與CSI=2.5,膽固醇隨時
間結晶析出之關係曲線圖 …………………………… 45
圖4-8 靜置37℃下,TC/L=3.4 CSI=2.0與CSI=2.3,膽固醇隨時
間結晶析出之關係曲線圖 …………………………… 45
圖5-1 Microtrac UPA 150 粒徑分析儀 …………………… 55
圖5-2 樣品裝載示意圖 ……………………………………… 57
圖5-3 粒徑分佈圖 …………………………………………… 58
圖5-4 摘要訊息示意圖 ……………………………………… 58
圖5-5 量測結果訊息示意 …………………………………… 58
圖5-6 標準品30倍稀釋下concentration index值vs.濃度關係
圖 ……………………………………………………… 66
圖5-7 標準品濃度c之粒徑分析結果圖 ……………………… 69
圖5-8 標準品濃度c/2之粒徑分析結果圖 …………………… 70
圖5-9 標準品濃度c/3之粒徑分析結果圖 …………………… 71
圖5-10 標準品濃度c/4之粒徑分析結果圖 ………………… 72
圖5-11 標準品濃度c/5之粒徑分析結果圖 ………………… 73
圖5-12 標準品濃度c/6之粒徑分析結果圖 ………………… 74
圖5-13 標準品濃度c/8之粒徑分析結果圖 ………………… 75
圖5-14 標準品濃度c/10之粒徑分析結果圖 ………………… 76
圖5-15 TC/L=3.4 CSI=2.0溶液之粒徑分析結果圖 ………… 77
圖5-16 TC/L=3.4 CSI=2.3溶液之粒徑分析結果圖 ………… 78




表目錄
表2-1 人體膽汁的成份 ……………………………………… 9
表2-2 人體內膽囊與膽道中的膽汁比較 …………………… 10
表4-1 TCDC/L=5.1、3.4及TC/L=5.1、3.4之檢量線於不同膽固醇
濃度之吸光值 ………………………………………… 39
表4-2 TCDC/L=5.1 CSI=2.0溶液,靜置恆溫37℃下吸光值數據
處理表 ………………………………………………… 46
表4-3 TCDC/L=5.1 CSI=2.5溶液,靜置恆溫37℃下吸光值數據
處理表 ………………………………………………… 47
表4-4 TCDC/L=3.4 CSI=2.0溶液,靜置恆溫37℃下吸光值數據
處理表 ………………………………………………… 48
表4-5 TCDC/L=3.4 CSI=2.3溶液,靜置恆溫37℃下吸光值數據
處理表 ………………………………………………… 49
表4-6 TC/L=5.1 CSI=2.0溶液,靜置恆溫37℃下吸光值數據
處理表 ………………………………………………… 50
表4-7 TC/L=5.1 CSI=2.5溶液,靜置恆溫37℃下吸光值數據
處理表 ………………………………………………… 51


表4-8 TC/L=3.4 CSI=2.0溶液,靜置恆溫37℃下吸光值數據
處理表 ………………………………………………… 52
表4-9 TC/L=3.4 CSI=2.3溶液,靜置恆溫37℃下吸光值數據
處理表 ………………………………………………… 53
表5-1 量測時間參考表 ……………………………………… 57
表5-2 標準品粒徑分析下之數據列表 ……………………… 66
表5-3 TC/L=3.4 CSI=2.0溶液粒徑分析下之數據列表 …… 68
表5-4 TC/L=3.4 CSI=2.3溶液粒徑分析下之數據列表 …… 68
Admirand, W. H.; Small D. M. 1968. The physicochemical basis of cholesterol gallstone formation in man. J. Clin. Invest. (47): 1043-1052.

Ahrendt, S. A.; Fox-Talbot, K.; Kaufman, H. S.; Lillemore, K. D.; Pitt, H. A. 1994. Cholesterol nucleates rapidly from mixed micelles in the prairie dog. Biochim. Biophys. Acta. (1211): 7-13.

Alvaro, D.; Cantafora, A.; Attili, A. F.; Corradini, S. G.; DeLuca, C.; Minervini, G.; Di Blase, A. 1986. Relationships between bile salts hydrophilicity and phospholipid composition in bile of various animal species. Comp. Biochem. Physiol. (83B): 551-554.

Barnwell, S. G.; Tuchweber, B.; Yousef, I. M. 1987. Biliary lipid secretion in the rat during infusion of increasing doses of unconjugated bile acids. Biochem. Biophys. Acta. (922): 221-233.

Broughton, G. 1994. Chenodeoxycholate : the bile acid. The drug: a review. Amer. J. Med. Sci. 307(1): 54-63.

Cantafora, A.; Di Blase, A.; Alvaro, D.; Angelico, M.; Marrin, M.; Attili, A. F. 1983. High performance liquid chromatographic analysis of molecular species of phosphatidylcholine: develop of quatitative assay and its application to human bile. Clin. Chim. Acta. (134): 281-295.

Carey, M. C.; Cahalane, M. J. Enterohepatic circulation. In: Arias, I. M.; Jakoby, W. E.; Popper, H.; Schachter, D.; Shafritz, D. A. 1988. The liver: biology and pathobiology. New York: Raven Press, Ltd., 573-616.

Carey, M. C. 1978. Critical tables for calculating the cholesterol saturation of native bile. J. Lipid Res. (19): 945-955.

Carey, M. C.; Small, D. M. 1969. Micellar properties of dihydroxy and trihydroxy bile salts: effects of counterion and temperature. J. Colloid Interface Sci. (31): 382-396.

Carey, M. C.; Small, D. M. 1970. The characteristics of mixed micelle solutions with particular reference to bile. Amer. J. Med. (49): 590-608.

Carey, M. C.; Small, D. M. 1978. The physical chemistry of cholesterol solubility in biles. J. Clin. Invest. (61): 998-1026.

Cohen, D.E.; Fisch, M. R.; Carey, M. C. 1990. Principles of laser light-scattering spectroscopy: applications to the physicochemical study of model and native biles. Hepatology (12): 113S-122S.

David, W. H.; Carey, M. C. 1990. Chemical species of lipids in bile. Hepatalogy (12): 6-16.

Dowling, R. H.; Paumgartner, G. 1990. Summary discussion (Section Ⅲ). Hepatology (12): 234S-244S.

Gantz, D. L.; Wang, D. Q. H.; Carey, M. C.; Small, D. M. 1999. Cryoelectron microscopy of a nucleating model bile in vitreous ice: formation of primordial vesicles. Biophysical J. (76): 1436-1415.

Halpern, Z.; Dudley, M. A.; Lynn, M. P.; Nader, J. M.; Breuer, A. C.; Holzbach, R. T. 1986. Vesicle aggregation in model systems of supersaturated bile: relation to crystal nucleation and lipid composition of the vesicular phase. J. Lipid Res. (27): 295-306.

Hattori, Y.; Tazuma, S.; Yamashita, G.; Kajiyama, G. 1999. Influence of cholesterol crystallization effector proteins on vesicle fusion in supersaturated model bile. J. Gastroenterol. Hepatol. (14): 669-674.

Higuchi, W. I.; Arakawa, M.; Lee, P. H.; Noro, S. 1987. Simple micelle-mixed micelle coexistence equilibria for the taurocholate-, taurochenodeoxycholate-, and tauroursodeoxycholate-lecithin systems. J. Colloid Interface Sci. (119): 30-37.

Higuchi, W. I. 1984. Kinetic and mechanism of cholesterol gallstone dissolution. Hepatology (4): 161S-165S.

Higuchi, W. I.; Lee, P. H.; Takayama, K.; Jain, U. K.; Mazer, N. A. 1990. Cholesterol monomer activity and its role in understanding cholesterol saturation and crystallization. Hepatology (12): 88S-93S.

Higuchi, W. I.; Liu, C. L.; Adachi, Y.; Mazer, N. A.; Lee, P. H. 1990. Equilibrium dialysis solutions on aqueous taurocholate-lecithin solutions: further validation of the method. Hepatology (12): 45S-50S.

Higuchi, W. I.; Su, C. C.; Daabis, N.; Wanichsirrioj, A.; Hofmann, A. F. 1984. Mechanism of cholesterol monohydrate dissolution in taurocholate-
lecithin media: Correlation between equilibrium dialysis results and
dissolution rates. J. Colloid Interface Sci. (98): 9-19.

Hjelm, R. P.; Thiyagarajan, P.; Alkan, H. 1988. A small angle neutron scattering study of the effects of dilution on particle morphology in mixture of glycocholate and lecithin. J. Appl. Crystallogr. (21): 858-863.

Hjelm, R. P.; Thiyagarajan, P.; Alkan, H. 1992. Organization of phosphatidylcholine and bile salt in rodlike mixed micelles. J. Phys. Chem. (96): 8653-8661.

Hofmann, A. F. 1984. Chemistry and enterohepatic circulation of bile acids. Hepatology (4): 4S-14S.

Hofmann, A. F. 1984. Medical treatment of cholesterol gallstones by bile desaturating agents. Hepatology (4): 199S-208S.

Holan, K. R.; Holzbach, R. T.; Hermann, R. E.; Cooperman, A. M.; Claffey, W. J. 1979. Nucleation time: a key factor in the pathogenesis of cholesterol gallstone disease. Gastroenterology (77): 611-617.

Jain, U. K.; Higuchi, W. I.; Lee, P. H.; Liu, C. L. 1993. A rapid method for the measurement of cholesterol thermodynamic activity in bile salt-lecithin-cholesterol solution. J. Pharm. Sci. (82): 714-720.

Jain, U. K.; Higuchi, W. I.; Liu, C. L.; Lee, P. H.; Mazer, N. A. 1992. Cholesterol (thermodynamic) activity determination in bile salt-lecithin cholesterol systems and cholesterol-rich liquid crystalline mosophase formation. Pharm. Res. (9): 792-799.

Juste, C.; Catala, I.; Henry, R.; Chabanet, C.; Gueugneau, A. M.; Beguet, F.; Lyan, B.; Corring, T. 1995. Influence of bile salt molecular species on cholesterol crystallization from supersaturated model biles. Biochim. Biophys. Acta (1254): 89-97.

Kibe, A.; Dudley, M. A.; Halpern, Z.; Lynn, M. P.; Breuer, A. C.; Holzbach, R. T. 1985. Factors affecting cholesterol monohydrate crystal nucleation time in model systems of supersaturated bile. J. Lipid Res. (26): 1102-1111.

Koppel, D. E. 1972. Analysis of macromolecular polydispersity in intensity correlation spectroscopy: the mothod of cumulants. J. Chem. Phys. (57): 4814-4820.

Kryczka, W.; Grieb, P. 1994. Clinical pharmacology of ursodeoxycholic acid. Postepy. Hig. Med. Dosw. (48): 53-68.

Lee, P. H.; Cheng, D. C. H.; Takayama, K.; Higuchi, W. I. 1988. Silicone polymer uptake method for determination of cholesterol thermodynamic activity in model bile systems. J. Pharm. Sci. (77): 610-614.

Lee, P. H.; Higuchi, W. I.; Adachi, Y.; Mazer, N. A. 1992. Mechanisms of cholesterol monohydrate dissolution in aqueous taurocholate-,
taurochenodeoxycholate-, and tauroursodeoxycholate-lecithin solutions: Correlation between micellar species and dissolution rates. J. Colloid Interface Sci. (154): 35-50.

Lee, P. H.; Higuchi, W. I.; Mazer, N. A. 1990. Cholesterol monohydrate dissolution rates and solubilities in aqueous taurocholate, taurochenodeoxy-cholate, and tauroursodeoxycholate solutions: a comparative study. J. Colloid Interface Sci. (137): 48-65.

Liu, C. L. 1997. Analysis of cholesterol gallstone therapy based on a model of cholesterol binding to mixed bile salt-lecithin micelles. Chin. Pharm. J. (49): 103-118.

Liu, C. L. 1997. Cholesterol binding to simple micelles in aqueous bile salt-cholesterol solutions. J. Colloid Interface Sci. (190): 261-268.

Liu, C. L. 2001. Cholesterol nucleation in supersaturated model bile of different total lipid concentrations. J. Chin Colloid Interface Soc. (23): 68-79.

Liu, C. L.; Higuchi, W. I. 2002. Cholesterol crystallite nucleation in supersaturated model biles from a thermodynamic standpoint. Biochim. Biophys. Acta (1588): 15-25.

Liu, C. L.; Jain, U. K.; Higuchi, W. I.; Mazer, N. A. 1994. Quasielastic light scattering and cholesterol thermodynamic activity studies of the micelle-to vesicle transition in conjugated ursodeoxycholate-lecithin cholesterol solutions. J. Colloid Interface Sci. (162): 437-453.

Liu, C. L.; Jain, U. K.; Lee, P. H.; Mazer, N. A.; Higuchi, W. I. 1994. Cholesterol thermodynamic activity, quasielastic light scattering and polarizing microscopy studies in aqueous taurocholate-lecithin solutions supersaturated with cholesterol. J. Colloid Interface Sci. (165): 411-424.

Mazer, N. A.; Benedek, G. B.; Carey, M. C. 1980. Quasielastic light-scattering studies of aqueous biliary lipid system. Mixed micelle formation in bile salt-lecithin solutions. Biochemistry (19): 601-615.

Mazer, N. A.; Carey, M. C.; Kwasnick, R. F.; Benedek, G. B. 1979. Quasielastic light scattering studies of aqueous biliary lipid systems. Size, shape, and thermodynamics of bile salt micelles. Biochemistry (18): 3064-3075.

Mazer, N. A.; Carey, M.C. 1983. Quasi-elastic light-scattering studies of aqueous biliary lipid systems: cholesterol solubilization and precipitation in model bile solution. Biochemistry (22): 426-442.

Moschetta, A.; van Berge-Henegouwen, G. P.; Portincasa, P.; Palasciano, G.; van Erpecum, K. J. 2001. Cholesterol crystallization in model biles: effects of bile salt and phospholipids species composition. J. Lipid Res. (42): 1273-1281.

Moschetta, A.; van Berge-Henegouwen, G. P.; Portincasa, P.; Renooij, W.; Groen, A. K.; van Erpecum, K. J. 2001. Hydrophilic bile salts enhance differential distribution of sphingomyelin and phosphatidylcholine between micellar and vesicular phases: potential implications for their effects in vivo. J. Hepatology (34): 492-499.

Nakayama, F.; Soloway, R. D.; Nakama, T.; Miyazaki, K.; Ichimiya, H.; Sheen, P. C.; Ker, C. G.; Ong, G. B.; Choi, T. K.; Boey, J.; Foong, W. C.; Tan, E. C.; Tung, K. H.; Lee, C. N. 1986. Hepatolithiasis in East Asia. Retrospective study. Dig. Dis. Sci. (31): 21-26.

Nichol, J. W.; Ozarowski, J. 1990. Sizing of lecithin-bile salt mixed micelles by size-exclusion high-performance liquid chromatography. Biochemistry (29): 4600-4606.

Patton, G. M.; Fasulo, J. M.; Robins, S. J. 1982. Separation of phospholipids and individual molecular species of phospholipids by high-performance liquid chromatography. J. Lipid Res. (23): 190-196.

Roehrkasse, R.; Fromm, H.; Maiavolti, M.; Tunuguntla, A. K.; Ceryak, S. 1986. Gallstone dissolution treatment with a combination of chenodeoxy-
cholic and ursodeoxycholic acids. Study of safety, efficacy and effects on bile lithogenicity, bile acid pool, and serum lipids. Dig. Dis. Sci. (31): 1032-1040.

Schoenfield, L. J.; Lachin, J. M. 1981. Chenodiol (chenodeoxycholic acid) for dissolution of gallstones: the National Cooperative Gallstone Study. A controlled trial of efficacy and safety. Ann. Intern. Med. (95): 257-282.

Schurtenberger, P.; Mazer, N. A.; Kanzig, W. 1985. Micelle to vesicle transition in aqueous solution of bile salt and lecithin. J. Phys. Chem. (89): 1024-1049.

Schurtenberger, P.; Mazer, N. A.; Kanzig, W. 1983. Static and dynamic light scattering studies of micellar growth and interactions in bile salt solutions. J. Phys. Chem. (87): 1024-1049.

Shankland, W. 1970. The equilibrium and structure of lecithin-cholate mixed micelles. Chem. Phys. Lipids (4): 109-130.

Small, D. M. 1968. Molecular association in biology and related systems. Adv. Chem. Sev. (84): 31-52.

Small, D. M. "The Bile Acid: Chemistry, Physiology, and Medicine" (P. P. Nair and D. Kritchevsky, Eds.) Vol. 1. pp. 249-359. Plenum Press, New York, 1971.

Stiehl, A.; Raesch, R.; Czygan, P.; Gotz, R.; Manner, C. H.; Walker, S.; Kommerell, B. 1980. Effects of biliary bile acid composition on biliary cholesterol saturation in gallstone patients treated with chenodeoxycholic acid and/or ursodeoxycholic acid. Gastroenterology (79): 1192-1198.

Su, C. H.; Lui, W. Y.; Peng, F. K. 1992. Relative prevalence of gallstone diseases in Taiwan. A nationwide cooperative study. Dig. Dis. Sci. (37): 764-768.

Tao, S.; Tazuma, S.; Kajiyama, G. 1993. Fatty acids composition of lecithin is a key factor in bile metastability in supersaturated model bile systems. Biochim. Biophys. Acta (1167): 142-146.

Tint, S. G.; Salen, G.; Colalillo, A.; Graber, D.; Speck, J.; Sheffer, S. 1982. Ursodeoxycholic acid: A safe and effective agent for dissolving cholesterol gallstones. Ann. Intern. Med. (97): 351-356.



Venneman, N. G.; Huisman, S. J.; Moschetta, A.; van Berge-Henegouwen, G. P.; van Erpecum, K. J. 2002. Effects of hydrophobic and hydrophilic bile salt mixtures on cholesterol crystallization in model biles. Biochim. Biophys. Acta. (1583): 221-228.

端木梁、李建雄、黃淑姿、翁郁嘉。 1996 。生物化學。藝軒圖書出版社。台北。台灣。pp:853-858。

朱正心。 1998 。現代文明病之一------膽結石。消化系統保健園地網頁。肝膽胃腸科。馬階紀念醫院消化系內科。台灣。(網址:www2.mmh.org.tw/gi/gi.htm)

蔡世豪。 1997 。膽石病的病理。膽道結石症。九州圖書出版社。台灣。pp:23-32。

金光亮。 1997 。膽囊結石之治療時機及方式的選擇。膽道結石症。九州圖書出版社。台灣。pp:85-98。

John Baynes、Marek H. Dominiczak。潘淑芬 編譯。2001。醫學生物化學。藝軒圖書出版社。台北。台灣。pp:189-197。

譚健民。1999。膽結石Q&A。書泉出版社。台北。台灣。pp:8-9。

周先樂。2000。人體生理學(下冊)。藝軒圖書出版社。台北。台灣。pp:577-579。

余秀瑛。1991。新投藥系統。台北市藥師公會會刊 10 (1)。pp:1-4。

余秀瑛。1992。未來十年之新藥趨向。藥學雜誌8 (2)。pp:119-121。

林正雄。1998。粒徑分析儀。儀器總覽-材料分析儀器。行政院國家科學委員會精密儀器發展中心。pp:90-93。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top