跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/15 04:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林志偉
研究生(外文):Jhih-Wei Lin
論文名稱:鴛鴦湖地區台灣扁柏老齡林及更新林穿落水量之研究
論文名稱(外文):The study of throughfall in an old-growth and a young yellow cypress stand in Yung-Yang Lake forest ecosystem
指導教授:張世杰張世杰引用關係
指導教授(外文):Shih-Chieh Chang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:自然資源管理研究所
學門:環境保護學門
學類:環境資源學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:87
中文關鍵詞:台灣扁柏穿落水空間變異
外文關鍵詞:spatial variabilityChamaecyparis obtusa var. formosanathroughfall
相關次數:
  • 被引用被引用:6
  • 點閱點閱:336
  • 評分評分:
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:3
本研究於鴛鴦湖地區台灣扁柏老齡林及更新林中,沿穿越線間隔1m,架設穿落水收集器,以瞭解兩不同林齡台灣扁柏林穿落水沈降情形及空間分佈的特性。收集期間為2005年10月至 2006年11月,共22個降雨樣本。結果顯示老齡林穿落水占重力沈降92%,更新林穿落水占重力沈降72%,兩林分穿落水量與林外降雨量及總沈降量均成線性正相關。兩林分穿落水與離樹幹距離並無明顯相關,老齡林最小水量發生於離樹幹1.0-1.5m處;更新林穿落水最小水量發生於離樹幹0.5-1.0m處。當降雨量極小時(e.g.事件9, BP=2.5mm;事件13, BP=3.0mm)反而為緊鄰樹幹的位置穿落水量最低。而當降雨量大時,各區間穿落水量則差異不大。利用半球面影像分析求得各點開闊度及葉面積指數,老齡林葉面積指數平均值為6.2,更新林葉面積指數平均值為5.2。開闊度影響雲霧截留沈降,進而影響穿落水水量。半變異元分析,老齡林空間相關距離為3.0-42.0m;更新林空間相關距離為2.0-80.0 m。使用傅立葉轉換求得水量變化週期,老齡林穿落水量變化週期為2.0- 16.7 m,更新林則為2.0- 20.0 m。因應穿落水空間變異,在10%誤差下,所需的穿落水收集器老齡林為8-61個,更新林則需12-33個。若以實驗期間所收集的22次穿落水總沈降量估算,老齡林需7個,更新林需9個收集器。
Spatial variation of throughfall was investigated in two Chamaecyparis obtusa var. formosana stands of different age (10-50 vs. 300-400 years old) in northeastern Taiwan. In each stand, 100 throughfall collectors were installed along a randomly selected 100-m transect with 1 m distance between consecutive collectors. The collectors were built up with funnels of 12 cm in diameter and 2-L collecting bottles, which limited the collection capacity to a maximum of 190 mm. The water volume of the collectors were recorded every two weeks from October 2005 to November 2006 and totally 22 useful samples were used for analysis.
The results showed that the stand age affected the amount of throughfall by far: throughfall accounted for 92% of bulk precipitation in the old-growth Chamaecyparis stand but only 72% for the young one. In both stands, throughfall correlated linearly with bulk precipitation. Within each stand, however, the amount of throughfall exhibited high spatial variation. On average, the smallest amount of throughfall occurred in the area 1.0-1.5 m away from stems for the old-growth stand and 0.5-1.0 m for the young stand. This pattern changed with the amount of bulk precipitation: when bulk precipitation was extremely little, the throughfall amount increased with increasing distance to stems; when bulk precipitation was large, the spatial variation decreased. The leaf area index (LAI) and openness above each collector were measured using hemispherical photography. The average LAI of the old-growth and the young stand was 6.2 and 5.2, respectively. The openness of the canopy may influence the amount of fog interception and further affect the amount of throughfall. By use of semivariogram, the distance of spatial correlation of throughfall was 14.0-42.0 m in the old-growth stand and 2.0-80.0 m in the young stand. On the other hand, the amount of throughfall showed a cyclic variation pattern using Fourier analysis with periods of 2.0-16.7 m and 2.0-20.0 m for old-growth and young stand, respectively. The necessary number of collector to reduce the sampling error to 10% was 8-61 for the old-growth stand and 12-33 for the young stand. These numbers reduced to 7 and 9 when total water volume of the 22 sampling events were analyzed.
1. 前言 1
2. 文獻回顧 1
2.1 大氣沈降及穿落水 1
2.2 穿落水的空間變異 4
2.2.1 影響穿落水變異的因子 6
2.2.2 估算穿落水水量的方法 8
2.3 穿落水空間變異之研究 10
2.4 國內穿落水量相關研究 13
2.5 研究目的 14
3. 材料與方法 15
3.1 樣區概述 15
3.2 實驗設計 17
3.2.1 樣線選擇 17
3.2.2 沈降量的量測 17
3.2.3 兩林份調查 19
3.3 穿落水空間變異分析 21
4. 結果 23
4.1 穿落水與重力沈降、雲霧沈降的關係 26
4.2 所需收集器數目 29
4.3 樹冠層對穿落水的影響 30
4.3.1 林分資料 30
4.3.2 穿落水量與離樹幹距離 32
4.3.3 穿落水量與開闊度指數之關係 33
4.4 空間變異分析 34
4.4.1 半變異元分析 34
4.4.2 傅立葉分析 34
5. 討論 38
5.1 穿落水之比較 38
5.2 所需收集器數目 41
5.3 穿落水量與離樹幹距離之關係 43
5.4 穿落水量與開闊度之關係 44
5.5 半變異元分析結果 44
5.6 傅立葉轉換週期變化 45
5.7 冠層水文收支 46
6. 結論 49
7. 引用文獻 50
江永哲, 1972. 不同樹冠截留量之測定. 中華水土保持學報. 3, 22-57.
呂小娟和張少同, 2000. 樣本半偏差極限值分佈的探討. 師大學報: 數理與科技類, 45, 11-19.
林作炬, 1988. 台灣扁柏之人工育林. 現代育林, 3, 29-32.
林登秋, 夏禹九和金恆鏢, 1996. 台灣東北部天然闊葉林林內降雨及林冠截留之研究. 台灣林業科學, 11, 393-400.
林登秋和江智民, 2002. 半球面影像在森林生態研究的應用. 台灣林業科學, 17, 387-400.
時忠杰, 王彥輝, 熊偉, 于澎濤, 郭浩, 張雷燕和董曉紅, 2006. 單株華北落葉松樹冠穿透降雨的空間異質性. 生態學報, 26, 2887-2886.
陳子弘, 2006. 鴛鴦湖地區台灣扁柏森林幹流水量之估算. 碩士論文,自然資源管理研究所. 花蓮: 東華大學.
陳信雄, 1990. 森林水文學. 千華出版社, 台北, pp. 582.
陳凱欣, 2005. 鴛鴦湖台灣扁柏森林生物量與冠層結構. 碩士論文,自然資源管理研究所. 花蓮: 東華大學.
陳耀德, 2003. 鴛鴦湖森林生態系大氣養份輸入之探討. 碩士論文,自然資源管理研究所. 花蓮: 東華大學.
陸象豫和唐凱軍, 1995. 台灣中部地區天然闊葉林降雨截留量之探討. 林業試驗所研究報告季刊, 10, 447-457.
彭令豐, 1988. 棲蘭山檜木天然下種更新造林之實施及現況. 現代育林, 3, 20-23.
黃昭豪, 2007. 台灣扁柏森林中雲霧顆粒化學與其在冠層間的變化及沉降. 碩士論文,自然資源管理研究所. 花蓮: 東華大學.
葉青峰, 2004. 台灣扁柏森林的生物量以及雲霧沈降量估算. 碩士論文,自然資源管理研究所. 花蓮: 東華大學.
潘家聲, 1964. 杉木林分樹冠對於降雨截留量之關係試驗. 林業試驗所研究報告, 94, 1-15.
潘家聲, 1965. 台灣櫸林分樹冠對於降雨截留量之關係試驗. 林業試驗所研究報告, 114, 1-17.
潘家聲, 1966. 天然闊葉林分樹冠對於降雨截留量之關係試驗.林業試驗所研究報告, 131, 1-20.
蔡欣育, 2005. 八卦山台地主要樹種雨水截留量之比較. 碩士論文,彰化: 彰化師範大學.
鄧振華, 2006. 鴛鴦湖台灣扁柏天然下種更新林附生性苔蘚植物組成、分佈與生物量之研究. 碩士論文,自然資源管理研究所. 花蓮: 東華大學.
冀志軍和朱國全, 1990. 油桐林冠截留雨量的觀測研究. 湖南林業科技, 4, 26-28.
盧惠生, 林壯沛, 黃良鑫, 胡蘇澄和陸象豫, 2003. 天然闊葉林與檳榔園穿落水空間分佈特性之研究. 台灣林業科學, 131-41.
賴鴻寬, 2002. 塔塔加雲杉天然林林內降水之研究. 碩士論文,森林學研究所. 台北市: 台灣大學.
Aboal, J. R., Jiménez M. S., Morales, D. and Gil, P., 2000. Effects of thinning on throughfall in Canary Islands pine forest – the role of fog. Journal of Hydrology, 238, 218-130.
Abrahamson, D. A., Dougherty, P. M. and Zarnoch, S. J., 1998. Hydrological components of a young loblolly pine plantation on a sandy soil with estimates of water use and loss. Water Resources Research, 34, 3503-3513.
Asdak, C., Jarvis, P. G., van Gardingen, P. amd Fraser, A., 1998. Rainfall interception loss in unlogged and logged forest areas of Central Kalimantan, Indonesia. Journal of Hydrology, 206, 237-244.
Aussenac, G., 1970. Action du couvert forestier sur la distribution au sol des pre´cipitations. Annales des Sciences Forestie´res 27, 383–399.(引自 Keim et al. (2005))
Beier, C. and Gundersen, P., 1989. Atmospheric deposition to the edge of a Spruce forest in Denmark. Environmental Pollution, 60, 257-271.
Beier, C., Hansen, K. and Gundersen, P., 1993. Spatial variability of throughfall fluxes in a spruce forest. Environmental Pollution, 81, 257–267.
Bellot, J. and Escarre, A., 1998. Stemflow and throughfall determination in a resprouted Mediterranean holm-oak forest. Annales Des Sciences Forestieres, 55, 847-865.
Bottcher, J., Strebel, O. and Lauer, S., 1997. Spatial variability of groundwater solute concentrations at the water table under a pine stand on sandy soil with deep ground water. Zeitschrift fur Pflanzenernahrung und Bodenkunde, 160, 67–72.
Bouten, W., Heimovaara, T. and Tiktak, A., 1992. Spatial pattern of throughfall and soil water dynamics in a Douglas fir stand. Water Resources Research, 28, 3227–3233.
Carleton, T. J. and Kavanagh, T., 1990. Influence of stand age and spatial location on throughfall chemistry beneath black spruce. Canadian Journal of Forest Research-Revue, 20, 1917-1925.
Carlyle-Moses, D. E., Laureano, J. S. F. and Price, A. G., 2004. Throughfall and throughfall spatial variability in Madrean oak forest communities of northeastern Mexico. Journal of Hydrology, 297, 124-135.
Chang, S. C., Lai, I. L., and Wu, J. T., 2002. Estimation of fog deposition on epiphytic bryophytes in a subtropical montane forest ecosystem in northeastern Taiwan. Atmospheric Research, 64, 159-167.
Chang, S. C. and Matzner, E., 2000. The effect of beech stemflow on spatial patterns of soil solution chemistry and seepage fluxes in a mixed beech/oak stand. Hydrological Processes, 14, 135–144..
Chuyong, B.G., Newbery, D.M. and Songwe, N.C., 2004. Rainfall input, throughfall and stemflow of nutrients in a central African rain forest dominated by ectomycorrhizal trees. Biogeochemistry, 67, 73-91.
Crockford, R. H., Richardson, D. P. and Sageman, R., 1996, Chemistry of rainfall, throughfall and stemflow in a eucalypt forest and a pine plantation in southeastern Australia. 1. Rainfall. Hydrological Processes, 10, 1–11.
Eaton, J. S., Likens, G. E. and Bormann, H. F., 1973. Throughfall and stemflow chemistry in a northern hardwood forest. Journal of Ecology, 61, 495-508.
Ford, E. D. and Deans, J. D., 1978. The effects of canopy structure on stemflow, throughfall and interception loss in a young Sitka spruce plantation. Journal of Arid Environments, 15, 905-917.
Frazer, G. W., Fournier, R. A., Trofymow, J. A., and Hall, R. J., 2001. A comparison of digital and film fisheye photography for analysis of forest canopy structure and light transmission. Agricultural and Forest Meteorology, 109, 249-263.
Gómez, J. A., Vanderlinden, K., Giraldez, J. V. and Fereres, E., 2002. Rainfall concentration under olive trees. Agricultural Water Management, 55, 53-70.
Gringarten, E. and Deutsch, C. V., 2001. Teacher's aide variogram interpretation and modeling. Mathematical Geology, 33, 507-534.
Hansen, K., 1995. In-canopy throughfall measurements in Norway spruce: water flow and consequences for ion fluxes. Water, Air and Soil Pollution, 85, 2259-2264.
Helvey, J. D. and Patric, J. H., 1965. Canopy and litter interception of rainfall by hardwood forests of the eastern United States. Water Resources Research, 1, 193-206.
Herwitz, S. R. and Slye, R. E., 1992. Spatial variability in the interception of inclined rainfall by a tropical rainforest canopy. Selbyana, 13, 62–71.
Herwitz, S. R., 1987. Raindrop impact and water flow on the vegetative surfaces of trees and the effect on stemflow and throughfall generation. Earth Surface Processes and Landforms, 12, 425-432.
Hoppe, E., 1986. Regenmessung unter Baumkoronen. Mittheilungen aus dem forest lichen Versuchswesen Oesterreichs. Helf 21. 75 pp. Vienna, Austeria.(引自Kittredge et al. (1941))
Johnson, R. C., 1990. The interception, througfall and stemflow in a forest in highland scotland and the comparison with other upland forests in the U.K. Journal of Hydrology, 118, 281-287.
Jonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M. and Baret, F., 2004. Review of methods for in situ leaf area index determination Part Ⅰ. Theories, sensors and hmispherical photography. Agricultural and Forest Meteorology, 121, 19-35.
Keim, R. F. and Skaugset, A. E., 2004. A linear system model of dynamic throughfall rates beneath forest canopies. Water Resources Research, 40, 1-12.
Keim, R. F., Skaugset, A. E. and Weiler, M., 2005. Temporal persistence of spatial patterns in throughfall. Journal of Hydrology, 314, 263-274.
Keim, R. F., Skaugset, A. E., Link, T. E. and Iroume, A., 2004. A stochastic model of throughfall for extreme events. Hydrology and Earth System Sciences, 8, 23-34.
Kimmins, J. P., 1973. Some statistical aspects of sampling throughfall precipitation in nutrient cycling studies in British Columbian coastal forests. Ecology, 54, 1008-1019.
Kittredge, J., Loughead, H. J. and Mazurak, A., 1941. Interception and stemflow in pine plantation. Journal of Forestry, 39, 505-522.
Konishi, S., Tani, M., Kosugi, Y., Takanashi, S., Sahat, M. M., Nik, A. R., Niiyama, K. and Okuda, T., 2006. Characteristics of spatial distribution of throughfall in a lowland tropical rainforest, Peninsular Malaysia. Forest Ecology and Management, 224, 19-25.
Kostelnik, K.M., Lynch, J. A., Grimm, J.W. and Corbett, E. S., 1989. Sample size requirements for estimation of throughfall chemistry beneath a mixed hardwood forest, Journal of Environmental Quality, 18, 274–280.
Krupa, S. V., 2002. Sampling and physico-chemical analysis of precipitation: a review. Environmental Pollution, 120, 565-594.
Lai, I. L., Chang, S. C., Lin, P. H., Chou. C. H. and Wu, J. T., 2006. Climatic characteristics of the subtropical mountainous cloud forest at the Yuanyang lake long-term ecological research site, Taiwan. Taiwania, 51, 317-329.
Lawrence, G. B. and Fernandez, I. J., 1993. A reassessment of areal variability of throughfall deposition measurements. Ecological Applications, 3, 473–480.
Lin, T. C., Hamburg, S. P., King, H. B. and Hsia, Y. J., 1997. Spatial variability of throughfall in a subtropical rain forest in Taiwan. Journal of Environmental Quality, 26, 172-180.
Lloyd, C. R. and Marques-Filho, A., 1988. Spatial variability of throughfall and stemflow measurements in Amazonian rain forests. Agricultural and Forest Meteorology, 42, 63-73.
Loescher, H. W., Powers, J. S. and Oberbauer, S. F. 2002. Spatial variation of throughfall volume in an old-growth tropical wet forest, Costa Rica. Journal of Tropical Ecology, 18, 397-407.
Loustau, D., Berbigier, P., Granier, A. and Moussa, F. E. H., 1992. Interception loss, throughfall and stemflow in a maritime pine stand. I. Variability of throughfall and stemflow beneath the pine canopy. Journal of Hydrology, 138, 449-467.
Lovett, G. M. and Lindberg, S. E., 1984. Dry deposition and canopy exchange in a mixed oak forest as determined by analysis of throughfall, Journal of Applied Ecology, 21, 1013–1027.
Lovett, G. M. and Reiners, W. A., 1986. Canopy structure and cloud water deposition in subalpinr coniferous forest. Tellus, 38B, 319-327
Manderscheid, B. and Matzner, E., 2000. Spatial and temporal variation of soil solution chemistry and ion fluxes through the soil in a mature Norway spruce (Picea abies (L.) Karst.) stand. Biogeochemistry, 30, 99–114.
Matzner, E., 1989. Acidic precipitation: case stydy solling. In: Acidic Precipitation. Adriano, D. C. and Havas, M. Editors. New York.39-83.
Parker, G. G., 1983. Throughfall and stemflow in the forest nutrient cycle. Advances in Ecological Research, 13, 58-135.
Peterson, D. L. and Rolfe, G. L., 1979. Determining sample size in throughfall studies. Forest Science, 25, 582-584.
Price, A. G., Dunham, K., Carleton, T., Band, L. ,1997. Variability of water fluxes through the black spruce (Picea mariana) canopy and feather moss (Pleurozium schreberi) carpet in the boreal forest of Northern Manitoba. Journal of Hydrology, 196, 310-323.
Puckett, L. J., 1991, Spatial variability and collector requirements for sampling throughfall volume and chemistry under a mixedhardwood canopy. Canadian Journal of Forest Research 21, 1581–1588.
Pypker, T. G., Bond, B. J., Link, T. E., Marks, D. and Unsworth, M. H., 2005, The importance of canopy structure in controlling the interception loss of rainfall: Examples from a young and an old-growth Douglas-fir forest. Agricultural and Forest Meteorology, 130, 113-129.
Raat, K. J., Draaijers, G. P. J., Schaap, M. G., Tietema, A. and Verstraten, J. M., 2002. Spatial variability of throughfall water and chemistry and forest floor water content in a Douglas fir forest stand. Hydrology and Earth System Sciences, 6, 363-374.
Reynolds, B., Cape, J. N. and Paterson, I. S., 1989, A comparison of element fluxes in throughfall beneath larch and Sitka spruce at two contrasting sites in the United Kingdom, Forestry, 62, 29–39.
Reynolds, E. R. C. and Leyton, L., 1963, Measurement and Significance of Throughfall in Forest Stands, in Rutter, A. J. and Whitehead, F. H. (eds.), Water Relations of Plants, Oxford, Blackwell Scientific Publications, 127–141.
Rodrigo, A. and Ávila, A., 2001. Influence of sampling size in the estimation of mean throughfall in two Mediterranean holm oak forests. Journal of Hydrology, 243, 216-227.
Rogerson, T. L., Byrnes, W. R., 1968. Net rainfall under hardwoods and red pine in central Pennsylvania . Water Resource Research, 4, 55-7.
Rothacher, J., 1963. Net precipitation under a Douglas-fir forest. Forest Science, 9, 423–429.
Rutter, A. J., Kershaw, K. A., Robins, P. C. and Monton, A. J., 1971. A predictive model of rainfall interception forests, I. Derivation of the model from observations in a plantation of corsican pine. Agricultural Meteorology, 9, 367-384.
Schemid, J. M., Mata, S. A., Martinez, M. H. and Troendle, C. A., 1991. Net precipitation within small group infestation of the mountain pine beetle. USDA For Serv Res Note RM-508, Fort Co: Rocky Mountain Forest and Range Experiment Station, 4 p.
Schume, H., Jost, G. and Katzensteiner, K., 2003. Spatio-temporal analysis of the soil water content in a mixed Norway spruce (Picea abies (L.) Karst.)-European beech (Fagus sylvatica L.) stand. Geoderma, 112, 273–287.
Seiler, J. and Matzner, E., 1995. Spatial variability of throughfall chemistry and selected soil properties as influenced by stem distance mature Norway spruce (Picea abies, Karst.). Plant and Soil, 176, 139-147.
Staelens, J., De Schrijver, A., Verheyen, K. and Verhoest, N. E. C., 2006. Spatial variability and temporal stability of throughfall water under a dominant beech (Fagus sylvatica L.) tree in relationship to canopy cover. Journal of Hydrology, 330, 651-662.
Stout, B. B. and McMahon, R. J., 1961. Throughfall variation under tree crowns. Journal of Geophysical Research, 66, 1839–1843.
Thimonier, A., 1998. Measurement of atmospheric deposition under forest canopies: Some recommendations for equipment and sampling design. Environmental Monitoring And Assessment, 52, 353-387.
Tobón, C., Sevink, J. and Verstraten, J. M., 2004. Solute fluxes in throughfall and stemflow in four forest ecosystems in northwest Amazonia. Biogeochemistry, 70, 1-25.
Voigt, G.K., 1960. Distribution of rainfall under forest stands. Forest Science, 6, 2–10.
Whelan, M. J., Anderson, J. M., 1996. Modelling spatial patterns of throughfall and interception loss in a Norway spruce (Picea abies) plantation at the plot scale. Journal of Hydrology 186, 335–354.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top