跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/12 14:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃昭豪
研究生(外文):SAO-HAO HUANG
論文名稱:台灣扁柏森林冠層間之雲霧化學及其沉降量估算
論文名稱(外文):Size-fractionating fog chemistry and deposition at different canopy heights in a yellow cypress forest.
指導教授:張世杰張世杰引用關係
指導教授(外文):Shih-Chieh Chang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:自然資源管理研究所
學門:環境保護學門
學類:環境資源學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:50
中文關鍵詞:雲霧沉降冠層台灣扁柏森霖雲霧化學雲霧森林
外文關鍵詞:Chamaecyparis obtusa var. formosana forestfog depositioncanopycloud forestfog chemistry
相關次數:
  • 被引用被引用:7
  • 點閱點閱:282
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:2
本研究自2005年12月至2006年6月間,在台灣東北部的台灣扁柏天然下種更新林中,進行四種高度、兩個顆粒區間的雲霧收集。所使用的儀器為自製sf-CASCC型式的雲霧收集器,size cut 在前後依序為30μm 以及7μm。研究的目的為森林冠層對於雲霧化學的影響,以及比較將冠層區分成兩層估算離子沉降與不予分層估算之間的差異。
在2003年6月至2006年6月此區的年平均雲霧籠罩時間為3118小時。每日的雲霧籠罩時間有很強的季節性,雲霧大多發生在冬季至春季間。另外雲霧的產生與風向有明顯的相關。
兩個粒徑區間的雲霧皆以SO42-為優勢離子。與降雨相比,雲霧水的離子濃度要高於降雨2-27倍。大小雲霧顆粒間離子濃度也具有差異,尤其在NH4+特別明顯。海洋可能不是雲霧水中離子唯一的來源。HNO3與H2SO4為本區主要的酸源,部分酸源受NH3的中和作用,因此使得本區在研究期間的pH要高於3.5。當小顆粒雲霧自L1(冠層頂端)進入至L2(冠層中間)時,Na+、 Mg2+、Ca2+和Cl-的離子濃度有明顯的變化,而大顆粒雲霧則僅在L3(冠層下緣)的位置離子濃度增加。比較所收集的大顆粒雲霧離子組成並未有明顯的變化,可能是因為30μm以上的大顆粒雲霧間有相似的化學組成,並受到冠層均勻的攔截。冠層對於小顆粒雲霧的攔截則有不同的攔截效率,因而導致自冠層外部進入冠層內的小顆粒雲霧離子組成的變化。
估計2004年5月至2006年4月雲霧沉降204 mm,約佔總大氣水沉降的4%。2006年1月至2006年3月雲霧在冠層上、下部分別沉降13.2 mm的水量,而總離子沉降依序為1700與3250 g ha-1。一般不予分層的方式與本研究的沉降估算比較,一般的估算方式高估了54%的NO3-與28%的SO42-以及低估了17%的K+沉降量。
Fog water chemistry in two droplet size classes was investigated at four heights of a Chamaecyparis obtusa var. formosana forest in northeastern Taiwan from December 2005 to June 2006. The size-cuts of the home-made “sf-CASCC type” fog collectors were 30 and 7 µm for the front and rear compartments, respectively. Purposes of this study were to investigate the effects of forest canopy on fog water chemistry and to compare the ion deposition fluxes estimated by separating the canopy into two layers and the traditional one-layer approach.
From June 2003 to June 2006 the average annual fog duration of this site was 3118 hr. Daily fog duration showed a strong seasonality, with more fog occurred in spring and winter. The occurrence of fog had a strong correlation with wind direction.
SO42- was the dominant ion in both size classes of the fog water. Compared to bulk precipitation, fog water had 2- to 27-fold higher ion concentrations. Differences in ion concentrations existed between large and small droplets too, especially for NH4+. Ocean might be not the sole source of fog water ions. HNO3 and H2SO4 were the main source of acidity, which was partly neutralized by NH3 and the resulting pH of fog water were higher than 3.5 during the study period. Ion concentrations were altered when fog entered the canopy: the changes in ion concentrations from L1 (above the canopy) to L2 (middle of the canopy) were more noticeable for Na+, Mg2+, Ca2+, and Cl- of the small fog droplets; on the other hand, significant increase in ion concentration for large droplets was found at L3 (height of the lowest branch). The relative composition of ions in large droplets did not change much between collectors, which might imply a similar chemical composition of droplets larger than 30 µm and a homogeneous interception of them by the canopy. On the contrary, the canopy intercepted the smaller fog droplets in different efficiency, resulting in a change in relative ion composition of the smaller fog droplets from top to bottom of the canopy.
The estimated fog deposition rate from May 2005 to April 2006 was 204 mm, which accounted for 4% of total atmospheric water deposition. The fog water deposition from January 2006 to March 2006 was estimated to be 13.2 and 32.3 mm to the top- and bottom-layer of the canopy, respectively, while the ion deposition at the same period was 1700 and 3250 g ha-1 for the two layers. Compared to the results of this study, the traditional one-layer approach overestimated the NO3- and SO42- deposition by 54% and 28%, respectively, and underestimated the K+ deposition by 17%.
表目錄 vi
1. 前言 1
1.1 雲霧 1
1.2 雲霧與森林 2
1.3 森林雲霧沉降的估算 3
1.4 國內目前雲霧森林研究現況 4
2. 研究目的 5
3. 材料與方法 6
3.1 樣區概述 6
3.2 雲霧水收集 7
3.2.1 儀器架設 7
3.2.2 儀器選擇與製作 8
3.3 化學分析 15
3.4 雲霧沉降估算 16
4. 結果 20
4.1 雲霧氣象資料 22
4.2 基礎雲霧化學 25
4.3 冠層雲霧變化 28
4.4 雲霧沉降估算 33
5. 討論 34
5.1 雲霧物理 34
5.2 雲霧化學組成 35
5.3 冠層雲霧變化 38
5.4 雲霧沉降 38
6. 結論 40
7. 建議 40
8. 引用文獻 41
吳敏如,2004,以微氣候模式估算雲霧森林中台灣扁柏的攔截沉降量。東華大學,碩士論文。
陳耀德,2003,鴛鴦湖森林生態系大氣離子輸入之探討。東華大學,碩士論文。
葉青峰,2004,台灣扁柏森林的生物量級雲霧沉降量估算。東華大學,碩士論文。
Aikawa, M., Hiraki, T., Shoga, M., & Tamaki, M. (2001). Fog and precipitation chemistry at mt. Rokko in Kobe, april 1997–march 1998. Water Air Soil Pollut, 130, 1517-1522.
Aikawa, M., Hiraki, T., Shoga, M., & Tamaki, M. (2005). Chemistry of fog water collected in the mt. Rokko area (Kobe city, Japan) between april 1997 and march 2001. Water Air And Soil Pollution, 160(1-4), 373-393.
Ali, K., Momin, G. A., Tiwari, S., Safai, P. D., Chate, D. M., & Rao, P. S. P. (2004). Fog and precipitation chemistry at Delhi, north India. Atmospheric Environment, 38(25), 4215-4222.
Anlauf, K., Li, S. M., Leaitch, R., Brook, J., Hayden, K., Toom-Sauntry, D., et al. (2006). Ionic composition and size characteristics of particles in the lower fraser valley: Pacific 2001 field study. Atmospheric Environment, 40(15), 2662-2675.
Bator, A., & Collett, J. L. (1997). Cloud chemistry varies with drop size. Journal Of Geophysical Research-Atmospheres, 102(D23), 28071-28078.
Blas, M., Sobik, M., Quiel, F., & Netzel, P. (2002). Temporal and spatial variations of fog in the western sudety mts., poland. Atmospheric Research, 64, 19-28.
Bridges, K. S., Jickells, T. D., Davies, T. D., Zeman, Z., & Hunova, I. (2002). Aerosol, precipitation and cloud water chemistry observations on the czech krusne hory plateau adjacent to a heavily industrialised valley. Atmospheric environment, 36, 353-360.
Burkard, R., Eugster, W., Wrzesinsky, T., & Klemm, O. (2002). Vertical divergence of fogwater fluxes above a spruce forest. Atmospheric Research, 64(1-4), 133-145.
Chang, S. C., Lai, I. L., & Wu, J. T. (2002). Estimation of fog deposition on epiphytic bryophytes in a subtropical montane forest ecosystem in northeastern Taiwan. Atmospheric Research, 64(1-4), 159-167.
Chang, S. C., Yeh, C. F., Wu, M. J., Hsia, Y. J., & Wu, J. T. (2006). Quantifying fog water deposition by in situ exposure experiments in a mountainous coniferous forest in Taiwan. Forest Ecology and Management, 224(1-2), 11-18.
Cini, R., Prodi, F., Santachiara, G., Porcu, F., Bellandi, S., Stortini, A. M., et al. (2002). Chemical characterization of cloud episodes at a ridge site in tuscan appennines, Italy. Atmospheric Research, 61(4), 311-334.
Collett, J. L., Bator, A., Sherman, D. E., Moore, K. F., Hoag, K. J., Demoz, B. B., et al. (2002). The chemical composition of fogs and intercepted clouds in the united states. Atmospheric Research, 64(1-4), 29-40.
Collett, J. L., Sherman, D. E., Moore, K. F., Hannigan, M. P., & Lee, T. (2001). Aerosol particle processing and removel by fogs:Observations in chemically heterogeneous central california radiation fogs. Water, Air, Soil Pollution, 1, 303-312.
Dawson, T. E. (1998). Fog in the california redwood forest: Ecosystem inputs and use by plants. Oecologia, 117(4), 476-485.
DeFelice, T. P. (2002a). Chemical attributes of some clouds amid a forest ecosystem's trees. Atmospheric Research, 65(1-2), 35-50.
DeFelice, T. P. (2002b). Physical attributes of some clouds amid a forest ecosystem's trees. Atmospheric Research, 65(1-2), 17-34.
Demoz, B. B., Collett, J. L., & Daube, B. C. (1996). On the caltech active strand cloudwater collectors. Atmospheric Research, 41(1), 47-62.
Elbert, W., Hoffmann, M. R., Kramer, M., Schmitt, G., & Andreae, M. O. (2000). Control of solute concentrations in cloud and fog water by liquid water content. Atmospheric Environment, 34(7), 1109-1122.
Herckes, P., Wendling, R., Sauret, N., Mirabel, P., & Wortham, H. (2002). Cloudwater studies at a high elevation site in the vosges mountains (France). Environmental Pollution, 117(1), 169-177.
Hoag, K. J., Collett, J. L., & Pandis, S. N. (1999). The influence of drop size-dependent fog chemistry on aerosol processing by san joaquin valley fogs. Atmospheric Environment, 33(29), 4817-4832.
Holder, C. D. (2004). Rainfall interception and fog precipitation in a tropical montane cloud forest of Guatemala. Forest Ecology and Management, 190(2-3), 373-384.
Igawa, M., Kase, T., Satake, K., & Okochi, H. (2002a). Severe leaching of calcium ions from fir needles caused by acid fog. Environmental Pollution, 119(3), 375-382.
Igawa, M., Matsumura, K., & Okochi, H. (2001). Fog water chemistry at mt. Oyama and its dominant factors. Water Air And Soil Pollution, 130(1-4), 607-612.
Igawa, M., Matsumura, K., & Okochi, H. (2002b). High frequency and large deposition of acid fog on high elevation forest. Environmental Science & Technology, 36(1), 1-6.
Igawa, M., Tsutsumi, Y., Mori, T., & Okochi, H. (1998). Fogwater chemistry at a mountainside forest and the estimation of the air pollutant deposition via fog droplets based on the atmospheric quality at the mountain base. Environmental Science & Technology, 32(11), 1566-1572.
Iyobe, T., Haraguchi, A., Nishijima, H., Tomizawa, H., & Nishio, F. (2003). Effect of fog on sea salt deposition on peat soil in boreal picea glehnii forests in Ochiishi, eastern hokkaido, Japan. Ecological Research, 18(5), 587-597.
Jagels, R., Jiang, M., Marden, S., & Carlisle, J. (2002). Red spruce canopy response to acid fog exposure. Atmospheric Research, 64(1-4), 169-178.
Khwaja, A., H., Brudnoy, Sara, Husain, & Liaquat. (1995). Chemical characterization of three summer cloud episodes at whiteface mountain. Chemosphere, 31(5), 3357-3381.
Klemm, O., Wrzesinsky, T., & Scheer, C. (2005). Fog water flux at a canopy top: Direct measurement versus one-dimensional model. Atmospheric Environment, 39(29), 5375-5386.
Kobayashi, T., Nakagawa, Y., Tamaki, M., Hiraki, T., & Aikawa, M. (2001). Cloud water deposition to forest canopies of cryptomeria japonica at mt. Rokko, Kobe, Japan. Water Air and Soil Pollution, 130(1-4), 601-606.
Krupa, S. V. (2002). Sampling and physico-chemical analysis of precipitation: A review. Environmental Pollution, 120(3), 565-594.
Kulshrestha, M. J., Sekar, R., Krishna, D., Hazarika, A. K., Dey, N. C., & Rao, P. G. (2005). Deposition fluxes of chemical components of fog water at a rural site in north-east India. Tellus Series B-Chemical and Physical Meteorology, 57(5), 436-439.
Lange, C. A., Matschullat, J., Zimmermann, F., Sterzik, G., & Wienhaus, O. (2003). Fog frequency and chemical composition of fog water - a relevant contribution to atmospheric deposition in the eastern Erzgebirge, Germany. Atmospheric Environment, 37(26), 3731-3739.
Liu, W. J., Meng, F. R., Zhang, Y. P., Liu, Y. H., & Li, H. M. (2004). Water input from fog drip in the tropical seasonal rain forest of xishuangbanna, south-west China. Journal of Tropical Ecology, 20, 517-524.
Liu, W. J., Zhang, Y. P., Li, H. L., Meng, F. R., Liu, Y. H., & Wang, C. M. (2005). Fog- and rainwater chemistry in the tropical seasonal rain forest of xishuangbanna, southwest china. Water Air and Soil Pollution, 167(1-4), 295-309.
Lovett, G. M. (1984). Rates and mechanisms of cloud water deposition to a subalpine balsam fir forest. Atmospheric Environment, 18, 361-371.
Lovett, G. M. (1994). Atmospheric deposition of nutrients and pollutants in north america:An ecological perspective. Atmospheric Environment, 18, 361-371.
Marinoni, A., Laj, P., Sellegri, K., & Mailhot, G. (2004). Cloud chemistry at the puy de dome: Variability and relationships with environmental factors. Atmospheric Chemistry and Physics, 4, 715-728.
Moore, K. F., Sherman, D. E., Reilly, J. E., & Collett, J. L. (2002). Development of a multi-stage cloud water collector part 1: Design and field performance evaluation. Atmospheric Environment, 36(1), 31-44.
Moore, K. F., Sherman, D. E., Reilly, J. E., Hannigan, M. P., Lee, T., & Collett, J. L. (2004). Drop size-dependent chemical composition of clouds and fogs. Part ii: Relevance to interpreting the aerosol/trace gas/fog system. Atmospheric Environment, 38(10), 1403-1415.
Nara, C., Dokiya, Y., Usui, N., Maruta, E., Liu, F. H., & Sagi, T. (2001). Acid fog damage of beech at hinokiboramaru-tanzawa, Japan. Journal Of Environmental Science And Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 36(3), 355-366.
Ogawa, N., Kikuchi, R., Okamura, T., Adzuhata, T., Kajikawa, M., & Ozeki, T. (1999). Cloud droplet size dependence of the concentrations of various ions in cloud water at a mountain ridge in northern Japan. Atmospheric Research, 51(1), 77-80.
Plessow, K., Acker, K., Heinrichs, D., & Moller, D. (2001). Time study of trace elements and major ions during two cloud events at the mt. Brocken. Atmospheric Environment, 35, 367-378.
Schell, D., Wobrock, W., Maser, R., Preiss, M., Jaeschke, W., Georgii, H. W., et al. (1997). The size-dependent chemical composition of cloud droplets. Atmospheric Environment, 31(16), 2561-2576.
Tenberken, B., & Bachmann, K. (1998). Sampling and analysis of single cloud and fog drops. Atmospheric Environment, 32(10), 1757-1763.
Thalmann, E., Burkard, R., Wrzesinsky, T., Eugster, W., & Klemm, O. (2002). Ion fluxes from fog and rain to an agricultural and a forest ecosystem in Europe. Atmospheric Research, 64(1-4), 147-158.
Vermeulen, A. T., Wyers, G. P., Romer, F. G., VanLeeuwen, N. F. M., Draaijers, G. P. J., & Erisman, J. W. (1997). Fog deposition on a coniferous forest in the netherlands. Atmospheric Environment, 31(3), 375-386.
Weathers, K. C. (1999). The importance of cloud and fog in the maintenance of ecosystems. Trends in Ecology & Evolution, 14(6), 214-215.
Wieprecht, W., Acker, K., Mertes, S., Collett, J., Jaeschke, W., Bruggemann, E., et al. (2005). Cloud physics and cloud water sampler comparison during febuko. Atmospheric Environment, 39(23-24), 4267-4277.
Wrzesinsky, T., & Klemm, O. (2000). Summertime fog chemistry at a mountainous site in central Europe. Atmospheric Environment, 34(9), 1487-1496.
Zimmermann, L., & Zimmermann, F. (2002). Fog deposition to Norway spruce stands at high-elevation sites in the eastern erzgebirge (Germany). Journal of Hydrology, 256(3-4), 166-175.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top