跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/08 14:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:梁仕楷
研究生(外文):Shih-Kai Liang
論文名稱:硫化處理對砷化鋁鎵/砷化銦鎵高電子移動率電晶體特性影響之研究
論文名稱(外文):Effect of Sulfur Treatment on AlGaAs/InGaAs High-Electron Mobility Transistor
指導教授:林育賢林育賢引用關係
指導教授(外文):Yu-Shyan Lin
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:136
中文關鍵詞:硫化保護層蕭特基接觸假晶型高電子移動率電晶硫化處理
外文關鍵詞:Sulfur TreatmentPHEMTSchottky contactsurface passivation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在此論文中,我們以「有機金屬化學氣相沉積法」成長AlGaAs/InGaAs高電子移動率電晶體。此外,我們也使用了Au 與 Pt/Au 不同金屬閘極並使用硫化銨溶液對AlGaAs材料進行表面披覆處理,並研究對元件特性所造成的影響。
對AlGaAs材料而言,硫化處理能更進一步降低表面複合速度及表面態位密度,因此能得到較佳的金-半蕭特基接觸。
在室溫下,閘極尺寸為1.0 x 100 μ㎡時,使用Pt/Au閘極並做硫化處理的元件,其最大汲極飽和電流為329.4 mA/mm,最大轉導為249 mS/mm,閘-汲極兩端崩潰電壓為25 V。使用Au閘極並做硫化處理的元件,其最大汲極飽和電流為288 mA/mm,最大轉導為200 mS/mm,閘-汲極兩端崩潰電壓為21.8 V。我們同時也描述了元件的高頻特性,高頻雜訊特性和高頻功率特性。
與無硫化保護層的HEMT元件比較,採用硫化處理成長硫化保護層的HEMT可以提升元件的性能,使元件適合運用於高速與高功率方面的應用。
In this thesis, we propose AlGaAs/InGaAs/GaAs high-electron mobility transistors (HEMTs) grown by metalorganic chemical- vapor deposition (MOCVD). The HEMTs with different gate alloys, including Au and Pt/Au. Moreover, using the (NH4)2x solution to from the AlGaAs surface passivation are studied and demonstrated.
For AlGaAs material, the surface recombination velocity and surface states are reduced by sulfur passivation. Hence, the well-behaved interfaces between the epitaxial semiconductor and Schottky metals can be obtained.
The gate dimensions of HEMTs are 1.0 x 100 μ㎡ gate. The HEMT with Pt/Au gate alloys and sulfur passivation has a maximum saturation drain current density of 329.4 mA/mm, a maximum extrinsic transconductance of 249 mS/mm and a gate-to-drain breakdown voltage of 25 V. The HEMT with Au gate alloys and sulfur passivation has a maximum saturation drain current density of 288 mA/mm, a maximum extrinsic transconductance of 200 mS/mm and a gate-to-drain breakdown voltage of 21.8 V. Additionally, the temperature-dependent behavior, microwave performance, high freauency noise parameter and power characteristics are measured.
The improved performance shows that the studied HEMT with sulfur passivation layer has good potential for high speed and high power applications.
摘要
第一章 研究動機 1
第二章 高電子移動率電晶體之介紹 4
2-1 MOCVD 有機金屬化學氣相沉積 4
2-2 PHEMT結構的設計 5
2-2-1 未摻雜緩衝層 5
2-2-2 InGaAs擬晶通道層 5
2-2-3 未摻雜空間層 6
2-2-4 n 摻雜蕭特基層 6
2-2-5 n+ 摻雜覆蓋層 7
第三章元件結構與元件製程 7
3-1 元件結構 8
3-2 元件製程 9
3-2-1 Mesa isolation 10
3-2-2 Drain and source metallization 10
3-2-3 Gate contact formation 11
3-2-4 Sulfur Passivated 12
第四章 實驗結果與討論 14
4-1 室溫(300 K)下直流特性 14
4-1-1 電流密度與電壓變化的特性 15
4-1-2 異質轉導特性 15
4-1-3 兩端崩潰電壓特性 18
4-2 高頻特性 19
4-3 雜訊特性 21
4-4 功率特性 22
4-5 溫度變化下的直流特性 24
4-5-1 電流密度與電壓變化的特性 24
4-5-2 異質轉導特性 25
4-5-3 RF特性 27
4-6 綜合比較 29
第五章 結論 33
參考文獻 38
圖目錄
表目錄
[1]R. Dingle, H. L. Stormer, A. C. Gossard, and W. Wiegann, ”Electron mobilities in modulation-doped semiconductor heterojuncyion superlattices”, Appl. Phys. Lett., vol. 33, pp. 665-667, 1978.
[2]W. C. Hsu, C. L. Wu, M. S. Tsai, C. Y. Chang, W. C. Liu, and H. M. Shieh, “Characterization of high performance inverted delta-modelation-doped (IDMD) GaAs/InGaAs pseudomorphic heterostructure FET’s”, IEEE Trans. Electron Devices vol. 42, pp. 804-809, 1995.
[3]Park, D. H., and Brennan, K. F., “Theory of electronic transport in two-dimensional Ga0.85In0.15As/Al0.15Ga0.85As pseudomorphic structure”, J. Appl. Phys., vol. 65 (4), pp.1615-1620, 1989.
[4]F. Ali and A. Gupta, “HEMTs and HBTs; Devices, Fabrication, and Circuits”, Artech House, Boston London, 1991.
[5]R. Menozzi, M. Borgarino, P. Cova, Y. Baeyens, and F. Fantini, “The effect of hot electron stress on the Dc and microwave characteristics of AlGaAs/InGaAs/GaAs PHEMTs”, Mircoelectron. Reliab., vol. 36, pp. 1899-1902, 1996.
[6]C. Tedesco, E. Zanoni, C. Canali, S. Bigliardi, M. Manfredi, D. C. Streit, and W. T.Anderson, “Impact ionization and light emission in high-power pseudomorphic AlGaAs/InGaAs HEMT’s”, IEEE Trans. Electron Devices vol. 40, pp. 1211-1214, 1993.
[7]N. X. Nguyen, W. N. Jiang, K. A. Baumann, and U. K. Mishra, “High-breakdown AlGaAs/InGaAs/GaAs PHEMT with tellurium doping”, Electron. Lett., vol. 31, pp. 586-588, 1885.
[8]L. W. Laih, S. Y. Cheng, W. C. Wang, P. H. Lin, J. Y. Chen, W. C. Liu, and W. Lin, “High-performance InGaP/InGaAs/GaAs step-compositioned doped channel field- effect transistor (SCDCFET)”, Electron. Lett., vol. 33, (1) pp. 998-99, 1997.
[9].J. C. Liou, and K. M. Lau, “Temperature dependence and persistent conductivity of GaAs MESFET’s with superlattice Buffers”, IEEE Trans. Electron Devices vol. 35, pp. 14-17, 1988.
[10]W. C. Hsu, H. M. Shieh, M. J. Kao, R. T. Hsu, Y. H. Wu, “On the improvement of gate voltage swings in δ-doped GaAs/InXGa1-XAs/GaAs pseudomorphic hrtero- structures”, IEEE Trans. Electron Devices vol. 40, pp.1630-1635, 1993.
[11]C. L. Wu, W. C. Hsu, H. M. Shieh, M. S. Tsai, “An improved inverted δ-doped GaAs/InGaAs pseudomorphic heterostructure grown by MOCVD”, IEEE Electron Device Lett., vol. 15, pp. 330-332, 1994.
[12]M. Feng, D. R. Scherrer, P. J. Apostolakis, J. W. Kruse, “Temerature dependent study of the microwave performance of 0.25µm gate GaAs MESFETs and GaAs pseudomorphic HEMTs”, IEEE Trans. Electron Devices vol. 43, p. 852, 1996.
[13]R. Menozzi, M. Borgarino, Y. Baeyens, M. Van Hove, F. Fantini, “On the effects of hot electrons on the DC and RF characteristics of lattice-matched InAlAs/InGaAs/ InP HEMTs”, IEEE Microwave and Guided Wave Lett., vol. 7, p. 3, 1997.
[14]W. C. Hsu, D. H. Huang, Y. S. Lin, Y. J. Chen, J. C. Huang, and C. L. Wu, “Perfor- mance improvement in tensile-strained In0.5Al0.5As/InXGa1-XAs/ In0.5Al0.5As meta- morphic HEMT”, IEEE Trans. Electron Device, vol. 53, p. 406, 2006.
[15]D. H. Huang, W. C. Hsu, Y. S. Lin, Y. H. Wu, R. T. Hsu, J. C. Huang and Y. K. Liao, “Comparative study of In0.52Al0.48As/InxGa1-xAs/InP high-electron- mobility transistors with a symmetrically graded and an inversely graded channel”, Semicond. Sci. Tech., vol. 21, p. 781, 2006.
[16] Y. S. Lin, W. C. Hsu, C. H. Wu, W. Lin, and R. T. Hsu, "High breakdown voltage symmetric double δ-doped In0.49Ga0.51P/In0.25Ga0.75As/GaAs high electron mobility transistor”, Appl. Phys. Lett., vol. 75, pp. 1616-1625, 1999.
[17] Y. W. Chen, W. C. Hsu, H. M. Shieh, Y. J. Chen, Y. S. Lin, Y. J. Li, and T. B. Wang, “High breakdown characteristicδ-doped InGaP/InGaAs/GaAs tunneling real-space transfer HEMT”, IEEE Trans. Electron Device, vol. ED-49, pp. 221-225, 2002.
[18] Y. J. Li, J. S. Su, Y. S. Lin, W. C. Hsu, “Investigation of a graded channel InGaAs/GaAs heterostructure transistor”, Superlattice and Microstructures, vol. 28, p. 47, 2000.
[19] W. C. Hsu, H. M. Shieh, C. L. Wu, “A high performance symmetric double δdoped GaAs/InGaAs/GaAs pseudomorphic HEMT’s grow by MOCVD”, IEEE Trans. Electron Device, vol. 41, pp. 456-459, 1994.
[20] J. S. Su, W. C. Hsu, W. Lin, Y. S. Lin, “Enhanced real-space transfer in δ-doped GaAs/In0.1Ga0.9As/In0.25Ga0.75As two-step channel heterojunctions”, J. Appl. Phys., vol. 82, pp. 4076-4080, 1997.
[21] P. H. Lai, S. I. Fu, Y. Y. Tsai, C. H. Yen, W. C. Liu, H. M. Chuang, S. Y. Cheng, “Thermal-Stability Improvement of a Sulfur-Passivated InGaP/InGaAs/GaAs HFET”, IEEE Trans. Electron Device, vol. 154, pp. 134-138, 2007.
[22] P. H. Lai, R. C. Liu, S. I. Fu, Y. Y. Tsai, C. W. Hunh, T. P. Chen, W. C. L in, “Effect of Formal Passivations on Temperature-Dependent Characteristics of High Electron Mobility Transistors”, Journal of The Electrochemical Society, vol. 82, pp. 4076-4080, 1997.
[23] J. Fan, Y. Kurata, and Y. Nannichi, “Marked reduction of the surface/interface states of GaAs by (NH4)XSX treatment”, J. J. Appl. Phys., vol. 28, no. 12, pp. L2255-L2257, 1989.
[24] Y. K. Kim, S. Kim, J. M. Seo, S. Ahn, K. J. Kim, T. K. Kang, and B. Kim, “Metal-dependent Fermi-level movement in the metal/sulfur-passivated InGaP contact”, Journal of The Electrochemical Society, vol. 82, pp. 4076-4080, 1997.
[25] C. R. Moon, B. D. Choe, S. D. Kwon, and H. Lim, “Difference of interface trap passivation in Schottky contacts formed on (NH4)2SX-treated GaAs and In0.5Ga0.5P”, J. Appl. Phys., vol. 81, no. 6, pp. 2904-2906, 1997.
[26] C. T. Lee, M. H. Lan, and C. D. Tasi, “Improved performances of InGaP Schottky contact with Ti/Pt/Au metals and ssm photodetectors by (NH4)2SX treatment,”Solid State Electron., vol. 41, no. 11, pp. 1715-1719, 1997.
[27] Y. Dong, X. M. Ding, S. Y. Hou, Y. Li, and X. B. Li, “Sulfur passivation of GaAs metal-semiconductor firld-effect transistor,”Appl. Phys. Lett., vol. 77, no. 23, pp. 3829-3841, 2000.
[28] Y. S. Lin, and Bo-Yuan Chen, “Comprehensive Characterization of In0.45Al0.55As/In0.5Ga0.5As/InxAl1-xAs metamorphic high-Electron mobility transistor on GaAs Substrate,”J. Electrochem. Soc., vol. 153, p. G1005, 2006.
[29] Y. S. Lin, and Bo-Yuan Chen, “Performance of AlGaAs/InGaAs/GaAs pseudo-morphic high-electron mobility transistor as a function of temperature,”J. Electrochem. Soc., vol. 154, pp. H406-H411, 2007.
[30] Y. S. Lin and Yu-Lung Hsieh, “Effect of temperature on novel InAlGaP/GaAs/InGaAs camel-gate pseudomorphic high-electron mobility transistors,”J. Elect-rochem. Soc., vol. 153, p. G498, 2006.
[31] Y. S. Lin, “Breakdown characteristics of InP/InGaAs composite-collector double heterostructure bipolar transistor”, Appl. Phys. Lett, vol. 83, p. 5545, 2003.
[32] Y. S. Lin and Yu-Lung Hsieh,“Temperature-dependent characteristics of InGaP/InGaAs/GaAs high-electron mobility transistor measured between 77 and 470 K”, J. Electrochem. Soc., vol. 152, p. G778, 2005.
[33] Y. S. Lin and Jr Hung Huang,“Mobility enhancement and breakdown behavior in InP-based heterostructure field-effect transistor”, J. Electrochem. Soc., vol. 152, p. G627, 2005.
[34] Y. S. Lin, D. H. Huang, Y. W. Chen, J. C. Huang, W. C. Hsu,“δ-doped InGaP/GaAs heterostrucure-emitter bipolar transistor grown by metalorganic chemical vapor deposition”, Thin Solid Films, vol. 515, p. 3978, 2007.
[35] Y. S. Lin, D. H. Huang, W. C. Hsu, T. B. Wang, R. T. Hsu, and Y. H. Wu, “n+-GaAs/p+-InAlGaP/n+-InAlGaP camel-gate high-electron mobility transistors,”Electrochem. Solid-State Lett., vol. 9, p. G37, 2006.
[36] Y. S. Lin, D. H. Huang, W. C. Hsu, T. B. Wang, K. H. Su, J. C. Huang, and C. H. Ho. “Improved InAlGaP-based heterostructure field-effect transistors,”Semicond. Sci. Tech., vol. 21, p. 540, 2006.
[37] C. H. Ho, J. H. Li, Y. S. Lin,“Thermoreflectance characterization of interband transitions of an In0.34Al0.66As0.85Sb0.15 film expitaxy on InP,”Appl. Phys. Lett, vol. 89, p. 191, 2006.
[38] C. H. Ho, K. W. Huang, and Y. S. Lin,“Photoreflectance and Photoluminescence Study of InxGa1-xAs/GaAs Graded-Channel High Electron Mobility Transistors”, J. Electrochem. Soc., vol. 153, p. G966, 2006.
[39] D. H. Huang, W. C. Hsu, Y. S. Lin, Y. H. Wu, R. T. Hsu, J. C. Huang and Y. K. Liao“Comparative study of In0.52Al0.48As/InxGa1-xAs/InP high-electron- mobility transistors with a symmetrically graded and an inversely graded channel,”Semicond. Sci. Tech., vol. 21, p. 781, 2006.
[40] D. H. Huang, W. C. Hsu, Y. S. Lin, J. C. Huang, and C. L. Wu,“Strain-Relaxed In0.1Al0.25Ga0.65As/In0.22Ga0.78As/In0.1Al0.25Ga0.65As HEMT,”J. Electrochme. Soc., vol. 153, p. G826, 2006.
[41] W. C. Hsu, Y. J. Chen, C. S. Lee, T. B. Wang, J. C. Huang, D. H. Huang, K. H. Su, Y. S. Lin, and C. L. Wu,“Characteristics of In0.425Al0.575As/InxGa1-x As Metamorphic HEMTs with pseudomorphic and symmetrically- graded channel”, IEEE Trans. Electron Device, vol. 52, p. 1079, 2005.
[42] W. C. Hsu, Y. J. Chen, C. S. Lee, T. B. Wand, Y. S. Lin, and C. L. Wu,“High-temperature thermal stability performance in delta-doped In0.425Al0.575As/In0.65Ga0.35As metamorphic HEMT”, IEEE Electron Device Lett., vol. 26, p. 59, 2005.
[43] Y. J. Chen, W. C. Hsu, Y. W. Chen, Y. S. Lin, R. T. Hsu, and Y. H. Wu,“InAlAs/InGaAs doped channel heterostructure for high-linearity, high-temperature and high-breakdown operations”, Solid-State Electron., vol. 49. p. 163, 2005.
[44] Y. W. Chen, Y. J. Chen, W. C. Hsu, R. T. Hsu, Y. H. Wu, and Y. S. Lin,“Enhancement-mode In0.52Al0.48As/In0.6Ga0.4As tunneling real space transfer HEMT,”J. Vac. Sci. Technol. B., vol. 22, p. 974, 2004.
[45] Y. W. Chen, W. C. Hsu, R. T. Hsu, Y. H. Wu, Y. J. Chen, and Y. S. Lin,“Character-istics of In0.52Al0.48As/InxGa1-xAsyP1-y/In0.52Al0.48As high electron-mobility transis-tors,”J. Vac. Sci. Techmol. B., vol. 22, p. 1044, 2004.
[46] Y. S. Lin, W. C. Hsu, C. Y. Yeh, and H. M. Shieh,“In0.34A10.66As0.85Sb0.15/δ(n+)-InP heterostructure field-effect transistors,”Appl. Phys. Lett., vol. 76, p. 3124, 2000.
[47] J. S. Su, W. C. Hsu, D. T. Lin, W. Lin, H. P. Shiao, Y. S. Lin, J. Z. Huang, and P. J. Chou,“High-breakdown voltage Al0.66In0.34As0.85Sb0.15/In0.75Ga0.25As/InP heterostructure field-effect transistors,”Electron Lett., vol. 32, p. 2095, 1996.
[48] Y. W. Chen, W. C. Hsu, H. M. Shieh, Y. J. Chen, Y. S. Lin, Y. J. Li, and T. B. Wang,“High breakdown characteristic δ-doped InGaP/InGaAs/AlGaAs tunneling real-space transfer HEMT”, IEEE Trans. Electron Device, vol. ED-49, p. 221, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top