|
[1]R. Dingle, H. L. Stormer, A. C. Gossard, and W. Wiegann, ”Electron mobilities in modulation-doped semiconductor heterojuncyion superlattices”, Appl. Phys. Lett., vol. 33, pp. 665-667, 1978. [2]W. C. Hsu, C. L. Wu, M. S. Tsai, C. Y. Chang, W. C. Liu, and H. M. Shieh, “Characterization of high performance inverted delta-modelation-doped (IDMD) GaAs/InGaAs pseudomorphic heterostructure FET’s”, IEEE Trans. Electron Devices vol. 42, pp. 804-809, 1995. [3]Park, D. H., and Brennan, K. F., “Theory of electronic transport in two-dimensional Ga0.85In0.15As/Al0.15Ga0.85As pseudomorphic structure”, J. Appl. Phys., vol. 65 (4), pp.1615-1620, 1989. [4]F. Ali and A. Gupta, “HEMTs and HBTs; Devices, Fabrication, and Circuits”, Artech House, Boston London, 1991. [5]R. Menozzi, M. Borgarino, P. Cova, Y. Baeyens, and F. Fantini, “The effect of hot electron stress on the Dc and microwave characteristics of AlGaAs/InGaAs/GaAs PHEMTs”, Mircoelectron. Reliab., vol. 36, pp. 1899-1902, 1996. [6]C. Tedesco, E. Zanoni, C. Canali, S. Bigliardi, M. Manfredi, D. C. Streit, and W. T.Anderson, “Impact ionization and light emission in high-power pseudomorphic AlGaAs/InGaAs HEMT’s”, IEEE Trans. Electron Devices vol. 40, pp. 1211-1214, 1993. [7]N. X. Nguyen, W. N. Jiang, K. A. Baumann, and U. K. Mishra, “High-breakdown AlGaAs/InGaAs/GaAs PHEMT with tellurium doping”, Electron. Lett., vol. 31, pp. 586-588, 1885. [8]L. W. Laih, S. Y. Cheng, W. C. Wang, P. H. Lin, J. Y. Chen, W. C. Liu, and W. Lin, “High-performance InGaP/InGaAs/GaAs step-compositioned doped channel field- effect transistor (SCDCFET)”, Electron. Lett., vol. 33, (1) pp. 998-99, 1997. [9].J. C. Liou, and K. M. Lau, “Temperature dependence and persistent conductivity of GaAs MESFET’s with superlattice Buffers”, IEEE Trans. Electron Devices vol. 35, pp. 14-17, 1988. [10]W. C. Hsu, H. M. Shieh, M. J. Kao, R. T. Hsu, Y. H. Wu, “On the improvement of gate voltage swings in δ-doped GaAs/InXGa1-XAs/GaAs pseudomorphic hrtero- structures”, IEEE Trans. Electron Devices vol. 40, pp.1630-1635, 1993. [11]C. L. Wu, W. C. Hsu, H. M. Shieh, M. S. Tsai, “An improved inverted δ-doped GaAs/InGaAs pseudomorphic heterostructure grown by MOCVD”, IEEE Electron Device Lett., vol. 15, pp. 330-332, 1994. [12]M. Feng, D. R. Scherrer, P. J. Apostolakis, J. W. Kruse, “Temerature dependent study of the microwave performance of 0.25µm gate GaAs MESFETs and GaAs pseudomorphic HEMTs”, IEEE Trans. Electron Devices vol. 43, p. 852, 1996. [13]R. Menozzi, M. Borgarino, Y. Baeyens, M. Van Hove, F. Fantini, “On the effects of hot electrons on the DC and RF characteristics of lattice-matched InAlAs/InGaAs/ InP HEMTs”, IEEE Microwave and Guided Wave Lett., vol. 7, p. 3, 1997. [14]W. C. Hsu, D. H. Huang, Y. S. Lin, Y. J. Chen, J. C. Huang, and C. L. Wu, “Perfor- mance improvement in tensile-strained In0.5Al0.5As/InXGa1-XAs/ In0.5Al0.5As meta- morphic HEMT”, IEEE Trans. Electron Device, vol. 53, p. 406, 2006. [15]D. H. Huang, W. C. Hsu, Y. S. Lin, Y. H. Wu, R. T. Hsu, J. C. Huang and Y. K. Liao, “Comparative study of In0.52Al0.48As/InxGa1-xAs/InP high-electron- mobility transistors with a symmetrically graded and an inversely graded channel”, Semicond. Sci. Tech., vol. 21, p. 781, 2006. [16] Y. S. Lin, W. C. Hsu, C. H. Wu, W. Lin, and R. T. Hsu, "High breakdown voltage symmetric double δ-doped In0.49Ga0.51P/In0.25Ga0.75As/GaAs high electron mobility transistor”, Appl. Phys. Lett., vol. 75, pp. 1616-1625, 1999. [17] Y. W. Chen, W. C. Hsu, H. M. Shieh, Y. J. Chen, Y. S. Lin, Y. J. Li, and T. B. Wang, “High breakdown characteristicδ-doped InGaP/InGaAs/GaAs tunneling real-space transfer HEMT”, IEEE Trans. Electron Device, vol. ED-49, pp. 221-225, 2002. [18] Y. J. Li, J. S. Su, Y. S. Lin, W. C. Hsu, “Investigation of a graded channel InGaAs/GaAs heterostructure transistor”, Superlattice and Microstructures, vol. 28, p. 47, 2000. [19] W. C. Hsu, H. M. Shieh, C. L. Wu, “A high performance symmetric double δdoped GaAs/InGaAs/GaAs pseudomorphic HEMT’s grow by MOCVD”, IEEE Trans. Electron Device, vol. 41, pp. 456-459, 1994. [20] J. S. Su, W. C. Hsu, W. Lin, Y. S. Lin, “Enhanced real-space transfer in δ-doped GaAs/In0.1Ga0.9As/In0.25Ga0.75As two-step channel heterojunctions”, J. Appl. Phys., vol. 82, pp. 4076-4080, 1997. [21] P. H. Lai, S. I. Fu, Y. Y. Tsai, C. H. Yen, W. C. Liu, H. M. Chuang, S. Y. Cheng, “Thermal-Stability Improvement of a Sulfur-Passivated InGaP/InGaAs/GaAs HFET”, IEEE Trans. Electron Device, vol. 154, pp. 134-138, 2007. [22] P. H. Lai, R. C. Liu, S. I. Fu, Y. Y. Tsai, C. W. Hunh, T. P. Chen, W. C. L in, “Effect of Formal Passivations on Temperature-Dependent Characteristics of High Electron Mobility Transistors”, Journal of The Electrochemical Society, vol. 82, pp. 4076-4080, 1997. [23] J. Fan, Y. Kurata, and Y. Nannichi, “Marked reduction of the surface/interface states of GaAs by (NH4)XSX treatment”, J. J. Appl. Phys., vol. 28, no. 12, pp. L2255-L2257, 1989. [24] Y. K. Kim, S. Kim, J. M. Seo, S. Ahn, K. J. Kim, T. K. Kang, and B. Kim, “Metal-dependent Fermi-level movement in the metal/sulfur-passivated InGaP contact”, Journal of The Electrochemical Society, vol. 82, pp. 4076-4080, 1997. [25] C. R. Moon, B. D. Choe, S. D. Kwon, and H. Lim, “Difference of interface trap passivation in Schottky contacts formed on (NH4)2SX-treated GaAs and In0.5Ga0.5P”, J. Appl. Phys., vol. 81, no. 6, pp. 2904-2906, 1997. [26] C. T. Lee, M. H. Lan, and C. D. Tasi, “Improved performances of InGaP Schottky contact with Ti/Pt/Au metals and ssm photodetectors by (NH4)2SX treatment,”Solid State Electron., vol. 41, no. 11, pp. 1715-1719, 1997. [27] Y. Dong, X. M. Ding, S. Y. Hou, Y. Li, and X. B. Li, “Sulfur passivation of GaAs metal-semiconductor firld-effect transistor,”Appl. Phys. Lett., vol. 77, no. 23, pp. 3829-3841, 2000. [28] Y. S. Lin, and Bo-Yuan Chen, “Comprehensive Characterization of In0.45Al0.55As/In0.5Ga0.5As/InxAl1-xAs metamorphic high-Electron mobility transistor on GaAs Substrate,”J. Electrochem. Soc., vol. 153, p. G1005, 2006. [29] Y. S. Lin, and Bo-Yuan Chen, “Performance of AlGaAs/InGaAs/GaAs pseudo-morphic high-electron mobility transistor as a function of temperature,”J. Electrochem. Soc., vol. 154, pp. H406-H411, 2007. [30] Y. S. Lin and Yu-Lung Hsieh, “Effect of temperature on novel InAlGaP/GaAs/InGaAs camel-gate pseudomorphic high-electron mobility transistors,”J. Elect-rochem. Soc., vol. 153, p. G498, 2006. [31] Y. S. Lin, “Breakdown characteristics of InP/InGaAs composite-collector double heterostructure bipolar transistor”, Appl. Phys. Lett, vol. 83, p. 5545, 2003. [32] Y. S. Lin and Yu-Lung Hsieh,“Temperature-dependent characteristics of InGaP/InGaAs/GaAs high-electron mobility transistor measured between 77 and 470 K”, J. Electrochem. Soc., vol. 152, p. G778, 2005. [33] Y. S. Lin and Jr Hung Huang,“Mobility enhancement and breakdown behavior in InP-based heterostructure field-effect transistor”, J. Electrochem. Soc., vol. 152, p. G627, 2005. [34] Y. S. Lin, D. H. Huang, Y. W. Chen, J. C. Huang, W. C. Hsu,“δ-doped InGaP/GaAs heterostrucure-emitter bipolar transistor grown by metalorganic chemical vapor deposition”, Thin Solid Films, vol. 515, p. 3978, 2007. [35] Y. S. Lin, D. H. Huang, W. C. Hsu, T. B. Wang, R. T. Hsu, and Y. H. Wu, “n+-GaAs/p+-InAlGaP/n+-InAlGaP camel-gate high-electron mobility transistors,”Electrochem. Solid-State Lett., vol. 9, p. G37, 2006. [36] Y. S. Lin, D. H. Huang, W. C. Hsu, T. B. Wang, K. H. Su, J. C. Huang, and C. H. Ho. “Improved InAlGaP-based heterostructure field-effect transistors,”Semicond. Sci. Tech., vol. 21, p. 540, 2006. [37] C. H. Ho, J. H. Li, Y. S. Lin,“Thermoreflectance characterization of interband transitions of an In0.34Al0.66As0.85Sb0.15 film expitaxy on InP,”Appl. Phys. Lett, vol. 89, p. 191, 2006. [38] C. H. Ho, K. W. Huang, and Y. S. Lin,“Photoreflectance and Photoluminescence Study of InxGa1-xAs/GaAs Graded-Channel High Electron Mobility Transistors”, J. Electrochem. Soc., vol. 153, p. G966, 2006. [39] D. H. Huang, W. C. Hsu, Y. S. Lin, Y. H. Wu, R. T. Hsu, J. C. Huang and Y. K. Liao“Comparative study of In0.52Al0.48As/InxGa1-xAs/InP high-electron- mobility transistors with a symmetrically graded and an inversely graded channel,”Semicond. Sci. Tech., vol. 21, p. 781, 2006. [40] D. H. Huang, W. C. Hsu, Y. S. Lin, J. C. Huang, and C. L. Wu,“Strain-Relaxed In0.1Al0.25Ga0.65As/In0.22Ga0.78As/In0.1Al0.25Ga0.65As HEMT,”J. Electrochme. Soc., vol. 153, p. G826, 2006. [41] W. C. Hsu, Y. J. Chen, C. S. Lee, T. B. Wang, J. C. Huang, D. H. Huang, K. H. Su, Y. S. Lin, and C. L. Wu,“Characteristics of In0.425Al0.575As/InxGa1-x As Metamorphic HEMTs with pseudomorphic and symmetrically- graded channel”, IEEE Trans. Electron Device, vol. 52, p. 1079, 2005. [42] W. C. Hsu, Y. J. Chen, C. S. Lee, T. B. Wand, Y. S. Lin, and C. L. Wu,“High-temperature thermal stability performance in delta-doped In0.425Al0.575As/In0.65Ga0.35As metamorphic HEMT”, IEEE Electron Device Lett., vol. 26, p. 59, 2005. [43] Y. J. Chen, W. C. Hsu, Y. W. Chen, Y. S. Lin, R. T. Hsu, and Y. H. Wu,“InAlAs/InGaAs doped channel heterostructure for high-linearity, high-temperature and high-breakdown operations”, Solid-State Electron., vol. 49. p. 163, 2005. [44] Y. W. Chen, Y. J. Chen, W. C. Hsu, R. T. Hsu, Y. H. Wu, and Y. S. Lin,“Enhancement-mode In0.52Al0.48As/In0.6Ga0.4As tunneling real space transfer HEMT,”J. Vac. Sci. Technol. B., vol. 22, p. 974, 2004. [45] Y. W. Chen, W. C. Hsu, R. T. Hsu, Y. H. Wu, Y. J. Chen, and Y. S. Lin,“Character-istics of In0.52Al0.48As/InxGa1-xAsyP1-y/In0.52Al0.48As high electron-mobility transis-tors,”J. Vac. Sci. Techmol. B., vol. 22, p. 1044, 2004. [46] Y. S. Lin, W. C. Hsu, C. Y. Yeh, and H. M. Shieh,“In0.34A10.66As0.85Sb0.15/δ(n+)-InP heterostructure field-effect transistors,”Appl. Phys. Lett., vol. 76, p. 3124, 2000. [47] J. S. Su, W. C. Hsu, D. T. Lin, W. Lin, H. P. Shiao, Y. S. Lin, J. Z. Huang, and P. J. Chou,“High-breakdown voltage Al0.66In0.34As0.85Sb0.15/In0.75Ga0.25As/InP heterostructure field-effect transistors,”Electron Lett., vol. 32, p. 2095, 1996. [48] Y. W. Chen, W. C. Hsu, H. M. Shieh, Y. J. Chen, Y. S. Lin, Y. J. Li, and T. B. Wang,“High breakdown characteristic δ-doped InGaP/InGaAs/AlGaAs tunneling real-space transfer HEMT”, IEEE Trans. Electron Device, vol. ED-49, p. 221, 2002.
|