|
1. E. Balas, A class of location, distribution and scheduling problems: Modeling and solution methods, Wiley, 1983.
2. E. Balas and M.C. Carrera, A dynamic subgradient-based branch-and-bound procedure for set covering, Operations Research, 44 (1996) 875--890.
3. J.E. Beasley, An algorithm for set covering problem, European Journal of Operational Research, 31 (1987) 85--93.
4. J.E. Beasley, Enhancing an algorithm for set covering problems, European Journal of Operational Research, 58 (1992) 293--300.
5. J.E. Beasley and P.C. Chu, A genetic algorithm for the set covering problem, European Journal of Operational Research, 94 (1996) 392--404.
6. C. Branhart and E.L. Johnson and G.L. Nemhauser and M.W.P. Savelsbergh and P.H. Vance, Branch-and-price: column generation for solving huge integer programs, Operations Research, 46 (1998) 316--329.
7. A. Caprara and M. Fischetti and P. Toth, A heuristic method for the set covering problem, Operations Research, 47 (1999) 730--743.
8. A. Caprara and M. Fischetti and P. Toth and D. Vigo and P.L. Guida, Algorithms for railway crew management, Mathematical Programming,79 (1997) 125--141.
9. A. Caprara and P. Toth, Algorithms for the set covering problem, Annals of Operations Research, 98 (2000) 353--371.
10. S. Ceria and P. Nobili and A. Sassano, Set covering problem, Wiley, 1997.
11. V. Chvatal, A greedy heuristic for the set-covering problem, Mathematics of Operations Research, 4 (1979) 233--235.
12. T. H. Cormen and C. E. Leiserson and R. L. Rivest and C. Stein, Introduction to Algorithms, MIT Press, 2001.
13. O. Coudert and J.C. Madre, New ideas for solving covering problems, Annual ACM IEEE Design Automation Conference:Proceedings of the 32nd ACM/IEEE conference on Design automation, (1995) 641--646.
14. U. Feige, A threshold of ln $n$ for approximating set cover, Journal of the ACM, 45 (1998) 634--652.
15. T.A. Feo, A probabilistic heuristic for a computationally difficult set covering problem, Operations Research Letters, 8 (1989) 67--71.
16. M.L. Fisher, An applications oriented guide to Lagrangian relaxation, Interfaces, 15 (1985) 10--21.
17. M.L. Fisher and P. Kedia, Optimal solution of set covering/partitioning problems using dual heuristics, Management Science, 36 (1990) 674--688.
18. T. Grossman and A. Wool, Computational experience with approximation algorithms for the set covering problem, European Journal of Operational Research, 101 (1997) 81--92.
19. S. Guha and S. Khuller, Greedy strikes back: improved facility location algorithms, Journal of Algorithms, 31 (1999) 228--248.
20. S. Haddadi, Simple Lagrangian heuristic for the set covering problem, European Journal of Operational Research, 97 (1997) 200--204.
21. F. Harche and G.L. Thompson, The column subtraction algorithm: an exact method for solving weighted set covering, packing and partitioning problems, Computers Operations Research, 21 (1994) 689--705.
22. J. Kleinberg and E. Tardos, Algorithm Design, Pearson Education, Inc., 2006.
23. C. Lund and M. Yannakakis, On the hardness of approximating minimization problems, Journal of the ACM, 41 (1994) 960--981.
24. M. Padberg and G. Rinaldi, A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems, Society for Industrial and Applied Mathematics, 33 (1991) 60--100.
25. V.T. Paschos, A survey of approximately optimal solutions to some set covering and packing problems, ACM Computing Surveys (CSUR), 29 (1997) 171--209.
26. W.R. Pearson and G. Robins and D.E. Wrege and T. Zhang, On the primer selection problem in polymerase chain reaction experiments, Artificial Intelligence in Medicine, 1 (1995) 231--246.
27. S. Rajagopalan and V.V. Vazirani, Primal-Dual RNC approximation algorithms for set cover and covering integer programs, Society for Industrial Applied Mathematics, 28 (1998) 525--540.
28. O. Shehory and S. Kraus, Task allocation via coalition formation among autonomous agents, Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, (1995) 655--661.
29. P. Slavik, A tight analysis of the greedy algorithm for set cover, Journal of Algorithms, 25 (1997) 237--254.
30. S.D. Vries and R.V. Vohra, Combinatorial auctions: a survey, INFORMS Journal on Computing, 15 (2003) 284--309.
31. R. Wiener, Branch and Bound Implementations for the Traveling Salesperson Problem - part 2, Journal of Object Technology, 2 (2003) 65--76.
32. W. Zhao and M.L. Fanning and T. Lane, Efficient RNAi-based gene family knockdown via set cover optimization, Artificial Intelligence in Medicine, 35 (2005) 61--73.
|